8£®¼ÆË㣺
£¨1£©£¨x-y+$\frac{4xy}{x-y}$£©£¨x+y-$\frac{4xy}{x+y}$£©£»
£¨2£©£¨$\frac{x}{y}$-$\frac{y}{x}$£©¡Â£¨$\frac{x}{y}$+$\frac{y}{x}$-2£©¡Â£¨1+$\frac{y}{x}$£©£»
£¨3£©$\frac{2{x}^{2}-8{y}^{2}}{3y-2x}$¡Â$\frac{{x}^{2}-2xy}{4{x}^{2}-12xy+9{y}^{2}}$£®

·ÖÎö £¨1£©Ô­Ê½À¨ºÅÖÐÁ½Ïîͨ·Ö²¢ÀûÓÃͬ·Öĸ·ÖʽµÄ¼Ó¼õ·¨Ôò¼ÆË㣬Լ·Ö¼´¿ÉµÃµ½½á¹û£»
£¨2£©Ô­Ê½À¨ºÅÖÐÁ½Ïîͨ·Ö²¢ÀûÓÃͬ·Öĸ·ÖʽµÄ¼Ó¼õ·¨Ôò¼ÆË㣬ÀûÓóý·¨·¨Ôò±äÐΣ¬Ô¼·Ö¼´¿ÉµÃµ½½á¹û£»
£¨3£©Ô­Ê½ÀûÓóý·¨·¨Ôò±äÐΣ¬Ô¼·Ö¼´¿ÉµÃµ½½á¹û£®

½â´ð ½â£º£¨1£©Ô­Ê½=$\frac{£¨x-y£©^{2}+4xy}{x-y}$•$\frac{£¨x+y£©^{2}-4xy}{x+y}$=$\frac{£¨x+y£©^{2}£¨x-y£©^{2}}{£¨x+y£©£¨x-y£©}$=£¨x+y£©£¨x-y£©=x2-y2£»
£¨2£©Ô­Ê½=$\frac{{x}^{2}-{y}^{2}}{xy}$¡Â$\frac{{x}^{2}+{y}^{2}-2xy}{xy}$¡Â$\frac{x+y}{x}$=$\frac{£¨x+y£©£¨x-y£©}{xy}$•$\frac{xy}{£¨x-y£©^{2}}$•$\frac{x}{x+y}$=$\frac{x}{x-y}$£»
£¨3£©Ô­Ê½=$\frac{2£¨x+2y£©£¨x-2y£©}{-£¨2x-3y£©}$•$\frac{£¨2x-3y£©^{2}}{x£¨x-2y£©}$=-$\frac{2£¨x+2y£©£¨2x-3y£©}{x}$£®

µãÆÀ ´ËÌ⿼²éÁË·ÖʽµÄ»ìºÏÔËË㣬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®½â·½³Ì£º$\frac{x}{0.3}$-$\frac{0.17-0.2x}{0.03}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®£¨1£©8p2-7q+6q-7p2-7£¬ÆäÖÐp=3£¬q=3£»
£¨2£©$\frac{1}{3}$m-$\frac{3}{2}$n-$\frac{5}{6}$n-$\frac{1}{6}$m£¬ÆäÖÐm=6£¬n=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®£¨-3£©2n-1+£¨-3£©2n+£¨-3£©2n+1£¬²¢Çó³öµ±n=2ʱµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¹ØÓÚx£¬yµÄ·½³Ì×é$\left\{\begin{array}{l}{2x-ay=6}\\{4x+y=7}\end{array}\right.$ÓÐÕûÊý½â£¬¼´x£¬y¶¼ÊÇÕûÊý£¬aÊÇÕýÕûÊý£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ð´³ö·ûºÏÏÂÁÐÌõ¼þµÄÊý£¬ÔÙÔÚÊýÖáÉϱíʾ³öÀ´£¬²¢Óá°£¾¡±ºÅ°ÑËüÃÇÁ¬½ÓÆðÀ´£®
£¨1£©-1.5µÄÏà·´Êý£»
£¨2£©Ïà·´ÊýµÈÓÚ±¾ÉíµÄÊý£»
£¨3£©¾ø¶ÔÖµµÈÓÚ2.5µÄ¸ºÊý£»
£¨4£©-|-1|£»
£¨5£©-£¨-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Î人ÊÐ2012Äê4Ô¾ÓÃñÓõç×¼±¸ÊµÐн×Ìݵç¼Û£¬µÚÒ»µµÎª140¡ãÒÔÄÚ¼Û¸ñ²»±ä£¬µÚ¶þµµÎª140¡ã-270¡ã¼Û¸ñ΢µ÷£¬µÚÈýµµ³¬¹ý270¡ãÒÔÉϼ۸ñÔÙ¼ÓÒ»µã£¬Ã¿¸öÔµĵç·Ñy£¨Ôª£©ÓëÓõçÁ¿x£¨¶È£©µÄº¯Êý¹ØϵÈçͼËùʾ£¬Èôij¾ÓÃñ9Ô·ÝÓõç300¶È£¬µç·Ñµ÷Õûºó½«¶àÖ§³ö12.5Ôª£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÈçͼËùʾ£¬ÓÐÁ½ÖÖÐÎ×´²»Í¬µÄÖ±½ÇÈý½ÇÐÎֽƬ¸÷Á½¿é£¬ÆäÖÐÒ»ÖÖֽƬµÄÁ½ÌõÖ±½Ç±ß³¤·Ö±ðΪ1ºÍ2£¬ÁíÒ»ÖÖֽƬµÄÁ½ÌõÖ±½Ç±ß³¤¶¼Îª1£®Í¼a¡¢Í¼b¡¢Í¼cÊÇÈýÕÅÐÎ×´¡¢´óСÍêÈ«ÏàͬµÄ·½¸ñÖ½£¬·½¸ñÖ½ÖеÄÿ¸öСÕý·½Ðεı߳¤¾ùΪ1£®ÇëÓÃÈýÖÖ·½·¨½«Í¼ÖÐËù¸øËÄ¿éÖ±½ÇÈý½ÇÐÎֽƬƴ³ÉƽÐÐËıßÐΣ¨·Ç¾ØÐΣ©£¬Ã¿ÖÖ·½·¨Òª°ÑͼÖÐËù¸øµÄËÄ¿éÖ±½ÇÈý½ÇÐÎֽƬȫ²¿ÓÃÉÏ£¬»¥²»ÖصþÇÒ²»Áô¿Õ϶£¬ÈýÖÖ·½·¨ËùÆ´µÃµÄƽÐÐËıßÐΣ¨·Ç¾ØÐΣ©µÄÖܳ¤»¥²»ÏàµÈ£¬²¢°ÑÄãËùÆ´µÃµÄͼÐΰ´Êµ¼Ê´óС»­ÔÚͼa¡¢Í¼b¡¢Í¼cµÄ·½¸ñÖ½ÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ä³ÉäÊÖÔÚÏàͬÌõ¼þϽøÐÐÉä»÷ѵÁ·£¬½á¹ûÈçϱíËùʾ£º
Éä»÷´ÎÊýn102050100200500
»÷ÖаÐÐÄ´ÎÊým9194491178450
»÷ÖаÐÐÄƵÂÊ$\frac{m}{n}$
£¨1£©¼ÆËã²¢Ìîд±íÖл÷ÖаÐÐĵÄƵÂÊ£»
£¨2£©ÊÔ¸ù¾Ý¸Ã±í£¬¹À¼ÆÕâÃûÉäÊÖÉä»÷Ò»´Î£¬»÷ÖаÐÐĵĸÅÂÊԼΪ¶àÉÙ£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸