精英家教网 > 初中数学 > 题目详情

已知,如图,在△ABC中,BD⊥AC于点D,点M、N分别是AB、BC边的中点.求证:直线MN是线段BD的垂直平分线.

证明:如右图所示,连接DM、DN,
∵BD⊥AC,
∴∠ADB=90°,
在Rt△ADB中,M是AB的中点,
∴DM=AB=BM,
又在Rt△BDE中,N是BC的中点,
∴DN=BC=BN,
∴MN是线段BD的垂直平分线.
分析:先连接DM、DN,由于BD⊥AC,那么∠ADB=90°,于是在Rt△ADB中,M是AB的中点,可得DM=AB=BM,可证M在线段BD垂直平分线上,同理可证N线段BD垂直平分线上,从而可知MN是BD垂直平分线.
点评:本题考查了线段垂直平分线的性质、直角三角形斜边上的中线的性质.解题的关键是连接DM、DN.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案