【题目】如图,是一个运算流程.
(1)分别计算:当x=150时,输出值为 ,当x=17时,输出值为 ;
(2)若需要经过两次运算流程,才能运算输出y,求x的取值范围;
(3)请给出一个x的值,使之无论运算多少次都不能输出,并请说明理由.
科目:初中数学 来源: 题型:
【题目】若x满足(x-4) (x-9)=6,求(x-4)2+(x-9)2的值.
解:设x-4=a,x-9=b,则(x-4)(x-9)=ab=6,a-b=(x-4)-(x-9)=5,
∴(x-4)2+(x-9)2=a2+b2=(a-b)2+2ab=52+2×6=37
请仿照上面的方法求解下面问题:
(1)若x满足(x-2)(x-5)=10,求(x-2)2 + (x-5)2的值
(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是15,分别以MF、DF作正方形,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线过点
和
,点P为x轴正半轴上的一个动点,连接AP,在AP右侧作
,且
,点B经过矩形AOED的边DE所在的直线,设点P横坐标为t.
求抛物线解析式;
当点D落在抛物线上时,求点P的坐标;
若以A、B、D为顶点的三角形与
相似,请直接写出此时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
如图,在四边形 ABCD 中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°,
求证:CD=AB
小刚是这样思考的;由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求证及特殊度数可联想到构造特殊三角形,即过点 A 作 AE⊥AB 交 BC 的延长线于点 E,对 AB=AE,∠E=∠D
在△ADC 与△CEA 中,
∠D = ∠E,∠DAC = ∠ECA = 75° ,AC = CA.
△ADC≌△CEA.
得 CD=AE=AB
请你参考小刚同学思考问题的方法,解决下面问题
如图,在四边形 ABCD 中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD 与 AB 否相等?若相等,请你给出证明;若不相等。请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线上部分点的横坐标x,纵坐标y的对应值如下表:
x | 0 | 1 | 2 | ||||
y | 0 | 4 | 6 | 6 | 4 |
小聪观察上表,得出下面结论:抛物线与x轴的一个交点为
;
函数
的最大值为6;
抛物线的对称轴是
;
在对称轴左侧,y随x增大而增大
其中正确有
A. B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将图1两个边长为1的正方形分割拼接成右边面积为2的正方形.
(1)请你直接写出图1中右边正方形的边长.
(2)请你同样用分割拼接的方法将图2中的五个边长为1正方形分割重新拼接成一个面积为5的正方形,画出切割拼接示意图,并如图1作出标记.(不必写出作法)
(3)设M=1+,
是M的整数部分,b是M的小数部分,
是
的小数部分,求
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB和CD相交于点O,∠C=∠1,∠D=∠2,求证:∠A=∠B.
证明:∵∠C=∠1,∠D=∠2(已知)
又∵∠1=∠2( )
∴______(等量代换)
∴AC∥BD( )
∴____(两直线平行,内错角相等)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com