精英家教网 > 初中数学 > 题目详情
如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为
4
73
5
4
73
5
分析:连接OA,过A作AD垂直于C,由PA为圆O的切线,得到PA与AO垂直,在直角三角形AOP中利用勾股定理求出OP的长,利用面积法求出AD的长,在直角三角形APD中,利用勾股定理求出PD的长,由CP-PD求出DC的长,在直角三角形ADC中,利用勾股定理即可求出AC的长.
解答:解:连接OA,过A作AD⊥CP,
∵PA为圆O的切线,
∴PA⊥OA,
在Rt△AOP中,OA=3,PA=4,
根据勾股定理得:OP=5,
∵S△AOP=
1
2
AP•AO=
1
2
OP•AD,
∴AD=
AP•AO
OP
=
4×3
5
=
12
5

根据勾股定理得:PD=
PA2-AD2
=
16
5

∴CD=PC-PD=8-
16
5
=
32
5

则根据勾股定理得:AC=
AD2+DC2
=
4
73
5

故答案为:
4
73
5
点评:此题考查了切线的性质,勾股定理,以及三角形的面积,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)计算弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P的度数为
26°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郑州模拟)如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧
CBA
上一点,若∠ABC=31°,则∠P的度数为
28°
28°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)求弦AB的长;
(3)过P、B两点的直线是否是⊙O的切线,说明理由.

查看答案和解析>>

同步练习册答案