【题目】如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
【答案】(1)证明见解析;(2)△ABC是直角三角形,理由见解析.
【解析】
(1)先证明四边形AECD是平行四边形,然后证明AE=EC即可四边形AECD是菱形;
(2)先说明BE=CE、∠ACE=∠CAE,再说明BE=CE、∠ACE=∠CAE,再根据三角形内角和得到∠B+∠BCA+∠BAC=180°,进一步得到∠BCE+∠ACE=90°即∠ACB=90°,即可说明△ABC是直角三角形.
(1)证明:∵AB//CD,
∴AE//CD,
又∵CE/∥AD,
∴四边形AECD是平行四边形.
∵AC平分∠BAD
∴∠CAE=∠CAD,
又∵AD∥CE,.∠ACE=∠CAD,
∴∠ACE=∠CAE,
∴AE=CE,
∴四边形AECD是菱形;
(2)解:△ABC是直角三角形,理由如下:
∵E是AB中点,
∴AE=BE.
又∵AE=CE,
∴BE=CE,∠ACE=∠CAE,
∴∠B=∠BCE,
∵∠B+∠BCA+∠BAC=180°,
∴2∠BCE+2∠ACE=180°
∴∠BCE+∠ACE=90°,即∠ACB=90°
∴△ABC是直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y1=x与反比例函数y2=的图像交于A、C两点,AB⊥x轴,垂足为B, CD⊥x轴,垂足为D.给出下列结论:①四边形ABCD是平行四边形,其面积为18;②AC=3;③当-3≤x<0或x≥3时,y1≥y2;④当x逐渐增大时,y1随x的增大而增大,y2随x的增大而减小.其中正确的结论有( )
A.①④B.①③④C.①③D.①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2015年十一黄金周商场大促销,某店主计划从厂家采购高级羽绒服和时尚皮衣两种产品共20件,高级羽绒服的采购单价y1(元/件)与采购数量x1(件)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);时尚皮衣的采购单价y2(元/件)与采购数量x2(件)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经店主与厂家协商,采购高级羽绒服的数量不少于时尚皮衣数量,且高级羽绒服采购单价不低于1240元,问该店主共有几种进货方案?
(2)该店主分别以1760元/件和1700元/件的销售出高级羽绒服和时尚皮衣,且全部售完,则在(1)问的条件下,采购高级羽绒服多少件时总利润最大?并求最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行并使直角边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=25米,求旗杆AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线经过点(9,10),交轴于点,直线∥轴,点是直线下方抛物线上的动点.
(1)直接写出抛物线的解析式为 ,点的坐标为 、的坐标为 _;
(2)过点且与轴平行的直线与直线、分别交于点、,当四边形的面积最大时,求点的坐标;
(3)如图2,当点为抛物线的顶点时,在直线上是否存在点,使得以、、为顶点的三角形与相似,若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水池有若干个进水口与出水口,每个口进出水的速度如图1、图2所示,只开1个进水口持续15小时可将水池注满.
(1)某段时间内蓄水量V(m3)与时间t(h)的关系如图3所示,0~3时只开2个进水口,3~b时只开1个进水口与1个出水口,9~c只开1个出水口,求证:a=b+c.
(2)若同时开2个出水口与1个进水口,多久可将满池的水排完?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“友谊商场”某种商品平均每天可销售100件,每件盈利20元.“五一”期间,商场决定采取适当的降价措施.经调查发现,每件该商品每降价1元,商场平均每天可多售出10件.设每件商品降价x元.据此规律,请回答:
(1)降价后每件商品盈利 元,商场日销售量增加 件 (用含x的代数式表示);
(2)在上述条件不变的情况下,求每件商品降价多少元时,商场日盈利最大,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.
(1)求证:四边形EFGH是平行四边形;
(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com