精英家教网 > 初中数学 > 题目详情

如果=36,求x

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:ABAC,且∠A=36°.

 

 

  1.在图1中,用尺规作AB的垂直平分线交ACD,并连接BD(保留作图痕迹,不写作法);

   2.△BCD是不是黄金三角形,如果是,请给出证明;如果不是,请说明理由;

   3.设,试求k的值;

  4.如图2,在△A1B1C1中,已知A1B1A1C1,∠A1=108°,且A1B1AB

请直接写出的值.

 

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年安徽省马鞍山六中中考模拟数学卷 题型:解答题

三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:ABAC,且∠A=36°.

【小题1】在图1中,用尺规作AB的垂直平分线交ACD,并连接BD(保留作图痕迹,不写作法);
【小题2】△BCD是不是黄金三角形,如果是,请给出证明;如果不是,请说明理由;
【小题3】设,试求k的值;
【小题4】如图2,在△A1B1C1中,已知A1B1A1C1,∠A1=108°,且A1B1AB
请直接写出的值.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省南京市白下区中考二模数学试卷(带解析) 题型:解答题

(1)如图①,P为△ABC的边AB上一点(P不与点A、点B重合),连接PC,如果△CBP∽△ABC,那么就称P为△ABC的边AB上的相似点.
画法初探
①如图②,在△ABC中,∠ACB>90°,画出△ABC的边AB上的相似点P(画图工具不限,保留画图痕迹或有必要的说明);

辩证思考
②是不是所有的三角形都存在它的边上的相似点?如果是,请说明理由;如果不是,请找出一个不存在边上相似点的三角形;
特例分析
③已知P为△ABC的边AB上的相似点,连接PC,若△ACP∽△ABC,则△ABC的形状是   
④如图③,在△ABC中,AB=AC,∠A=36°,P是边AB上的相似点,求的值.
(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的点(P不与点A、点B重合),作PQ⊥CD,垂足为Q.如果矩形ADQP∽矩形ABCD,那么就称PQ为矩形ABCD的边AB、CD上的相似线.

①类比(1)中的“画法初探”,可以提出问题:对于如图④的矩形ABCD,在不限制画图工具的前提下,如何画出它的边AB、CD上的相似线PQ呢?
你的解答是:   (只需描述PQ的画法,不需在图上画出PQ).
②请继续类比(1)中的“辩证思考”、“特例分析”两个栏目对矩形的相似线进行研究,要求每个栏目提出一个问题并解决.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省南京市白下区中考二模数学试卷(解析版) 题型:解答题

(1)如图①,P为△ABC的边AB上一点(P不与点A、点B重合),连接PC,如果△CBP∽△ABC,那么就称P为△ABC的边AB上的相似点.

画法初探

①如图②,在△ABC中,∠ACB>90°,画出△ABC的边AB上的相似点P(画图工具不限,保留画图痕迹或有必要的说明);

辩证思考

②是不是所有的三角形都存在它的边上的相似点?如果是,请说明理由;如果不是,请找出一个不存在边上相似点的三角形;

特例分析

③已知P为△ABC的边AB上的相似点,连接PC,若△ACP∽△ABC,则△ABC的形状是   

④如图③,在△ABC中,AB=AC,∠A=36°,P是边AB上的相似点,求的值.

(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的点(P不与点A、点B重合),作PQ⊥CD,垂足为Q.如果矩形ADQP∽矩形ABCD,那么就称PQ为矩形ABCD的边AB、CD上的相似线.

①类比(1)中的“画法初探”,可以提出问题:对于如图④的矩形ABCD,在不限制画图工具的前提下,如何画出它的边AB、CD上的相似线PQ呢?

你的解答是:   (只需描述PQ的画法,不需在图上画出PQ).

②请继续类比(1)中的“辩证思考”、“特例分析”两个栏目对矩形的相似线进行研究,要求每个栏目提出一个问题并解决.

 

查看答案和解析>>

同步练习册答案