精英家教网 > 初中数学 > 题目详情
1.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针旋转到△COD的位置,则旋转角为90°.

分析 根据旋转的性质,对应边的夹角∠BOD即为旋转角,问题得解.

解答 解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,
∴对应边OB、OD的夹角∠BOD即为旋转角,
∴旋转的角度为90°.
故答案为:90°.

点评 本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.已知△ABC中,AB=AC,BC=6.点P从点B出发沿射线BA移动,同时点Q从点C出发沿线段AC的延长线移动,点P、Q移动的速度相同,PQ与直线BC相交于点D.
(1)如图①,过点P作PF∥AQ交BC于点F,求证:△PDF≌△QDC;
(2)如图②,当点P为AB的中点时,求CD的长;
(3)如图③,过点P作PE⊥BC于点E,在点P从点B向点A移动的过程中,线段DE的长度是否保持不变?若保持不变,请求出DE的长度,若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在矩形ABCD中,AB=$\sqrt{2}$,BC=2,以A为圆心,AD为半径画弧交线段BC于E,连接DE,则阴影部分的面积为(  )
A.$\frac{π}{4}$B.2$\sqrt{2}$-$\frac{π}{4}$C.$\frac{π}{2}$D.2$\sqrt{2}$-$\frac{π}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在“猴年马月”和“猴头猴脑”这两个词语的八个汉字中,任选一个汉字是“猴”字的概率是$\frac{3}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,抛物线y=$\frac{1}{4}$x2+bx+c与x轴交于A、B两点,其中点B(2,0),交y轴于点C(0,-$\frac{5}{2}$).直线y=mx+$\frac{3}{2}$过点B与y轴交于点N,与抛物线的另一个交点是D,点P是直线BD下方的抛物线上一动点(不与点B、D重合),过点P作y轴的平行线,交直线BD于点E,过点D作DM⊥y轴于点M.
(1)求抛物线y=$\frac{1}{4}$x2+bx+c的表达式及点D的坐标;
(2)若四边形PEMN是平行四边形?请求出点P的坐标;
(3)过点P作PF⊥BD于点F,设△PEF的周长为C,点P的横坐标为a,求C与a的函数关系式,并求出C的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.一列数a1,a2,a3,…满足条件:a1=$\frac{1}{2}$,an=$\frac{1}{1{-a}_{n-1}}$(n≥2,且n为整数),则a2017等于(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,抛物线y=mx2-2mx+n(m<0)的顶点为A,与x轴交于B,C两点(点B在点C左侧),与y轴正半轴交于点D,连接AD并延长交x轴于E,连AC、DC.S△DEC:S△AEC=3:4.
(1)求点E的坐标;
(2)△AEC能否为直角三角形?若能,求出此时抛物线的函数表达式;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知$\frac{a}{b+c}$=$\frac{b}{a+c}$=$\frac{c}{a+b}$=x,且a+b+c≠0,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.近年来,手机微信红包迅速流行起来.去年春节,小米的爷爷也尝试用微信发红包,他分别将10元、30元、60元的三个红包发到只有爷爷、爸爸、妈妈和小米的微信群里,他们每人只能抢一个红包,且抢到任何一个红包的机会均等(爷爷只发不抢,红包里钱的多少与抢红包的先后顺序无关).
(1)求小米抢到60元红包的概率;
(2)如果小米的奶奶也加入“抢红包”的微信群,他们四个人中将有一个人抢不到红包,那么这种情况下,求小米和妈妈两个人抢到红包的钱数之和不少于70元的概率.

查看答案和解析>>

同步练习册答案