精英家教网 > 初中数学 > 题目详情

【题目】已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=﹣
①求点D的坐标及该抛物线的解析式;
②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;

(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.

【答案】
(1)解:①过点D作DF⊥x轴于点F,如图1,

∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,

∴∠DBF=∠BAO,

又∵∠AOB=∠BFD=90°,AB=BD,

在△AOB和△BFD中,

∴△AOB≌△BFD(AAS)

∴DF=BO=1,BF=AO=2,

∴D的坐标是(3,1),

根据题意,得a=﹣ ,c=0,且a×32+b×3+c=1,

∴b=

∴该抛物线的解析式为y=﹣ x2+ x;

②∵点A(0,2),B(1,0),点C为线段AB的中点,

∴C( ,1),

∵C、D两点的纵坐标都为1,

∴CD∥x轴,

∴∠BCD=∠ABO,

∴∠BAO与∠BCD互余,

要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,

设P的坐标为(x,﹣ x2+ x),

(Ⅰ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图2,

则tan∠POB=tan∠BAO,即 =

= ,解得x1=0(舍去),x2=

∴﹣ x2+ x=

∴P点的坐标为( );

(Ⅱ)当P在x轴的下方时,过P作PG⊥x轴于点G,如图3

则tan∠POB=tan∠BAO,即 =

= ,解得x1=0(舍去),x2=

∴﹣ x2+ x=﹣

∴P点的坐标为( ,﹣ );

综上,在抛物线上是否存在点P( )或( ,﹣ ),使得∠POB与∠BCD互余


(2)解:如图3,

∵D(3,1),E(1,1),

抛物线y=ax2+bx+c过点E、D,代入可得 ,解得 ,所以y=ax2﹣4ax+3a+1.

分两种情况:

①当抛物线y=ax2+bx+c开口向下时,若满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个,则点Q在x轴的上、下方各有两个.

(i)当点Q在x轴的下方时,直线OQ与抛物线有两个交点,满足条件的Q有2个;

(ii)当点Q在x轴的上方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,抛物线y=ax2+bx+c与x轴的交点必须在x轴的正半轴上,与y轴的交点在y轴的负半轴,所以3a+1<0,解得a<﹣

②当抛物线y=ax2+bx+c开口向上时,点Q在x轴的上、下方各有两个,

(i)当点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个;

(ii)当点Q在x轴的下方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q才两个.

根据(2)可知,要使得∠QOB与∠BCD互余,则必须∠QOB=∠BAO,

∴tan∠QOB=tan∠BAO= = ,此时直线OQ的斜率为﹣ ,则直线OQ的解析式为y=﹣ x,要使直线OQ与抛物线y=ax2+bx+c有两个交点,所以方程ax2﹣4ax+3a+1=﹣ x有两个不相等的实数根,所以△=(﹣4a+ 2﹣4a(3a+1)>0,即4a2﹣8a+ >0,解得a> (a< 舍去)

综上所示,a的取值范围为a<﹣ 或a>


【解析】(1)①过点D作DF⊥x轴于点F,先依据AAS证明△AOB≌△BFD,从而可得到D的坐标,然后将点D的坐标代入到抛物线的解析式求解即可;②先证得CD∥x轴,故此可得到∠POB=∠BAO,设P的坐标为(x,-x2+x),分为P在x轴的上方,P在x轴的下方两种情况画出图形,过P作PG⊥x轴于点G,然后依据锐角三角函数的定义列比例式求解即可;
(2)如果使得符合条件的Q点的个数是4个,那么当a<0时,抛物线交于y轴的负半轴,当a>0时,最小值得<-1,接下来,解关于a的不等式即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD=( )

A.3
B.4
C.4.8
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中ABC.将其平移后得到AB的对应点是C的对应点的坐标是.

(1)在平面直角坐标系中画出ABC

(2)写出点的坐标是_____________,坐标是___________;

(3)此次平移也可看作________平移了____________个单位长度,再向_______平移了______个单位长度得到△ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为10的菱形ABCD中,对角线BD16,对角线ACBD相交于点G,点O是直线BD上的动点,OEABEOFADF.

(1)求对角线AC的长及菱形ABCD的面积.

(2)如图①,当点O在对角线BD上运动时,OEOF的值是否发生变化?请说明理由.

(3)如图②,当点O在对角线BD的延长线上时,OEOF的值是否发生变化?若不变,请说明理由;若变化,请探究OEOF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度 ycm)与所挂物体的质量 xkg)之间有如下表关系:

下列说法不正确的是(

A.y x 的增大而增大B.所挂物体质量每增加 1kg弹簧长度增加 0.5cm

C.所挂物体为 7kg时,弹簧长度为 13.5cmD.不挂重物时弹簧的长度为 0cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,则∠GFC=_____度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1ABCD,∠A=35°,∠C=40°,求∠APC的度数.(提示:作PEAB).

2)如图2ABDC,当点P在线段BD上运动时,∠BAP=∠α,∠DCP=∠β,求∠CPA与∠α,∠β之间的数量关系,并说明理由.

3)在(2)的条件下,如果点P在射线DM上运动,请你直接写出∠CPA与∠α,∠β之间的数量关系______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低。马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:

品种

A

B

原来的运费

45

25

现在的运费

30

20

(1)求每次运输的农产品中A,B产品各有多少件?

(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

2018年10月24日港珠澳大桥正式开通,它是中国建设史上里程最长、投资最多、施工难度最大的跨海桥梁项目,体现了我国逢山开路、遇水架桥的奋斗精神,体现了我国综合国力、自主创新能力,体现了我国勇创世界一流的民族志气. 港珠澳大桥全长55公里,跨越伶仃洋,东接香港特别行政区,西接广东省珠海市和澳门特别行政区,首次实现了珠海、澳门与香港的跨海陆路连接,极大地缩短了三地间的距离. 通车前,小亮妈妈驾车从香港到珠海的陆路车程大约220公里,如果行驶的平均速度不变,港珠澳大桥通车后,小亮妈妈驾车从香港到珠海所用的行驶时间比原来缩短了2小时15分钟,求小亮妈妈原来驾车从香港到珠海需要多长时间.

查看答案和解析>>

同步练习册答案