精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥ABPF⊥AD,垂足分别为EF,且PE=PF,平行四边形ABCD是菱形吗?为什么?

【答案】是菱形,理由见解析

【解析】

解:是菱形. ……2

理由如下:∵PE⊥ABPF⊥AD,且PE=PF

∴AC∠DAB的角平分线,

∴∠DAC=∠CAE……5

四边形ABCD是平行四边形,

∴DC∥AB…… 7

∴∠DCA=∠CAB

∴∠DAC=∠DCA

∴DA=DC

平行四边形ABCD是菱形.…… 9

首先根据定理:到角两边距离相等的点在角的平分线上,可得到∠DAC=∠CAE,然后证明∠DAC=∠DCA,可得到DA=DC,再根据菱形的判定定理:邻边相等的平行四边形是菱形,进而可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,圆柱形玻璃容器高19cm,底面周长为60cm,在外侧距下底1.5cm的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市今年中考理化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签ABC表示)和三个化学实验(用纸签DEF表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.

(1) 用“列表法”或“树状图法”表示所有可能出现的结果;

(2) 小刚抽到物理实验B和化学实验F(记作事件P)的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)如图,在矩形ABCD中,点EAD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点FGFAFAD于点G,设 =n.

(1)求证:AE=GE;

(2)当点F落在AC上时,用含n的代数式表示的值;

(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线的解析表达式为,且轴交于点.直线经过点,直线交于点

1)求点的坐标;

2)求直线的解析表达式;

3)在轴上求作一点,使的和最小,直接写出的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为 60°,然后在坡顶D测得树顶B的仰角为300,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是( ) m

A. B. 30 C. D. 40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°,AB=AC,DABC,tanDBA= ,若CD=2 ,则线段BC的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△DEF中,AB=DE,∠B=DEF

1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是

2)添加了条件后,证明△ABC≌△EFD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是(  )

A. 1小时 B. 2小时 C. 3小时 D. 4小时

查看答案和解析>>

同步练习册答案