精英家教网 > 初中数学 > 题目详情
如图甲,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,且AB=CD.
(1)试问OE=0F吗?请说明理由.
(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.
分析:(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFO≌△DEO,从而得出OE=0F.
(2)结论仍然成立,同理可以证明得到.
解答:解:(1)OE=0F;
证明:∵DE⊥AC,BF⊥AC,
∴∠DEF=∠BFE=90°.
∵AE=CF,AE+EF=CF+EF.即AF=CE.
在Rt△ABF和Rt△CDE中,
AB=CD
AF=CE

∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE.
在△BFO和△DEO中,
∠BFO=∠DEO
∠BOF=∠DOE
BF=DE

∴△BFO≌△DOE(AAS),
∴OE=0F;

(2)结论依然成立.
理由:由AE=CF,得AF=CE,
结合已知得Rt△ABF≌Rt△CDE,
由BF=DE,从而△BFO≌△DEO,
∴FO=EO,
即结论依然成立;
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图甲,已知△ABC和△DEF中,∠B=∠DEF,AB=DE,BE=CF.
①请说明∠A=∠D的理由;
②图甲中△ABC可以经过图形的变换得到△DEF,请你描述△ABC的变换过程;
③若图形经过变换后变成图乙,且∠E=38°,∠EDB=25°,∠C=57°,求∠NMF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:
(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为SN
①若△DEF的面积为10000,当n为何值时,2<Sn<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式.(不必证明)精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•庆元县模拟)定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn
①若△DEF的面积为1000,当n为何值时,3<Sn<4?
(请用计算器进行探索,要求至少写出二次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

利用“等积”计算或说理是一种很巧妙的方法,就是一个面积从两个不同的角度表示.如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的长.

解题思路:利用勾股定理易得AB=5利用S△ABC=
1
2
BC×AC=
1
2
AB×CD
,可得到CD=2.4
请你利用上述方法解答下面问题:
(1)如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的长.
(2)如图乙,△ABC是边长为2的等边三角形,点D是BC边上的任意一点,DE⊥AB于E点,DF⊥AC于F点,求DE+DF的值
分析:①利用备用图计算等边三角形ABC高线的长度
②连接AD,利用S△ABC=S△ADB+S△ADC
解:

查看答案和解析>>

科目:初中数学 来源: 题型:

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.

(1)如图甲,已知格点(小正方形的顶点)O(0,0)A(3,0),B(0,4),请你画出以格点为顶点,OA、OB为勾股边且对角线相等的勾股四边形OAMB;
(2)如图乙,若C(1,2),那么在图中所有格点中是否能找到一点D,使以CA、CB为勾股边的四边形ACBD是勾股四边形.如果能找到,请写出D点的坐标(不需要证明);
(3)如图丙,AC、BD是四边形ABCD的两条对角线,△ABD是等边三角形,∠DCB=30°.求证:四边形ABCD是勾股四边形.

查看答案和解析>>

同步练习册答案