【题目】寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:
(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;
(2)并按此规律计算:(a)2+4+6+…+300的值;(b)162+164+166+…+400的值.
【答案】
(1)
解:∵1个最小的连续偶数相加时,S=1×(1+1),
2个最小的连续偶数相加时,S=2×(2+1),
3个最小的连续偶数相加时,S=3×(3+1),
…
∴n个最小的连续偶数相加时,S=n(n+1)
(2)
解:(a)2+4+6+…+300=150×(150+1)=22650;
(b)162+164+166+…+400,
=(2+4+6+…+400)﹣(2+4+6+…+160),
=200×201﹣80×81,
=40200﹣6480,
=33720
【解析】(1)由表中的式子可得S与n之间的关系为:S=n(n+1);(2)首先确定有几个加数,由上述可得规律:加数的个数为最后一个加数÷2,据此解答.
科目:初中数学 来源: 题型:
【题目】下列运算正确的是( )
A.(a+b)2=a2+b2B.(-2ab3)3=-6a3b6
C.(-a+b)(a+b)=b2-a2D.2x2y+3xy2=5x3y3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3
(1)试求(﹣2)※3的值
(2)若1※x=3,求x的值
(3)若(﹣2)※x=﹣2+x,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列材料,然后解后面的问题.
材料:一个三位自然数 (百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.
(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;
(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )
A. 180元 B. 200元 C. 225元 D. 259.2元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com