精英家教网 > 初中数学 > 题目详情

如图,已知ED∥BC,GB2=GE•GF
(1)求证:四边形ABCD为平行四边形;
(2)连接GD,若GB=GD,求证:四边形ABCD为菱形.

证明:(1)∵ED∥BC,

∵GB2=GE•GF,


∴AB∥CF,即AB∥CD.
又∵ED∥BC
∴四边形ABCD为平行四边形;
(2)连接BD交AC于点O.
∵四边形ABCD为平行四边形.
∴BO=DO,
∵GB=GD∴OG⊥BD 即AC⊥BD.
又∵四边形ABCD为平行四边形,
∴四边形ABCD为菱形.
分析:(1)根据平行线分线段成比例定理可以得到:,然后根据GB2=GE•GF变形得到:,则,然后利用平行线分线段成比例定理的逆定理即可证得AB∥CD,根据平行四边形的定义即可证得;
(2)根据平行四边形的性质:平行四边形的对角线互相平分,得到O是BD的中点,再根据GB=GD,利用等腰三角形的性质即可得到BD⊥AC,利用菱形的判定定理即可证得.
点评:本题考查了平行线分线段成比例定理及其逆定理,和菱形的判定定理,等腰三角形的三线合一定理,运用平行线分线段成比例定理,找准对应关系是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知ED∥BC,∠EAB=∠BCF,
(1)四边形ABCD为平行四边形;
(2)求证:OB2=OE•OF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区二模)如图,已知ED∥BC,GB2=GE•GF
(1)求证:四边形ABCD为平行四边形;
(2)连接GD,若GB=GD,求证:四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源:2013年5月中考数学模拟试卷(14)(解析版) 题型:解答题

如图,已知ED∥BC,∠EAB=∠BCF,
(1)四边形ABCD为平行四边形;
(2)求证:OB2=OE•OF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源:2013年湖南省湘潭市中考数学模拟试卷(解析版) 题型:解答题

如图,已知ED∥BC,∠EAB=∠BCF,
(1)四边形ABCD为平行四边形;
(2)求证:OB2=OE•OF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源:2012年北师大版初三中考数学模拟试卷(一)(解析版) 题型:解答题

如图,已知ED∥BC,∠EAB=∠BCF,
(1)四边形ABCD为平行四边形;
(2)求证:OB2=OE•OF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.

查看答案和解析>>

同步练习册答案