精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c的图象如图所示,x=是该抛物线的对称轴,根据图中所提供的信息,请写出有关a,b,c的四条结论,并简要说明理由.

【答案】见解析

【解析】试题分析由抛物线的开口方向判断a的符号由抛物线与y轴的交点判断c的符号然后根据对称轴及抛物线与x轴交点情况进行推理进而得出结论.

试题解析:①∵开口方向向上,∴a>0,

②∵y轴的交点为在y轴的正半轴上,∴c>0,

③∵对称轴为x=>0,∴ab异号b<0,

④∵抛物线与x轴有两个交点,∴b2﹣4ac>0,

x=1y=a+b+c<0,

x=﹣1y=ab+c>0.

结论有a>0,b<0,c>0,a+b+c<0,ab+c>0等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一方有难八方支援,某市政府筹集抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型可供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

(1)若全部物资都用甲、乙两种车来运送,需运费8200元,则分别需甲、乙两种车各几辆?

(2)为了节约运费,该市政府共调用16辆甲、乙,丙三种车都参与运送物资,试求出有几种运送方案,哪种方案的运费最省?其费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB90°BC的垂直平分线DEBCD,交ABEFDE上,并且AFCE

1)求证:四边形ACEF是平行四边形;

2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;

3)四边形ACEF有可能是正方形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个坡角为30°的斜坡上有一电线杆AB,当太阳光与水平线成45°角时,测得该杆在斜坡上的影长BC20m.求电线杆AB的高(精确到0.1m,参考数值:≈1.73,≈1.41).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB分别是x轴上位于原点左右两侧的点,点P2p)在第一象限,直线PAy轴于点C03),直线PBy轴于点DAOP的面积为12

1)求COP的面积;

2)求点A的坐标及p的值;

3)若BOPDOP的面积相等,求直线BD的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形

(1)如果

①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为 ,线段的数量关系为

②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;

(2)如果是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用四个螺丝将四条不可弯曲的本条围成一个木框(形状不限),不记螺丝大小,其中相邻两螺丝之间的距离依次为3457.且相邻两本条的夹角均可调整,若调整木条的夹角时不破坏此木框,则任意两个螺丝之间的最大距离是(

A.6B.7C.8D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了方便行人,市政府打算修建如图所示的过街天桥,桥面AD平行于地面BC,立柱AEBC于点E,立柱DFBC于点F,若AB=5米,tanB=C=30°.

(1)求桥面AD与地面BC之间的距离.

(2)因受地形限制,决定对该天桥进行改建,使CD斜面的坡度变陡,将其30°坡角改为40°,改建后斜面为DG,试计算此次改建节省路面宽度CG大约应是多少?(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.732)

查看答案和解析>>

同步练习册答案