精英家教网 > 初中数学 > 题目详情
如图,等腰直角△ABC和等边△AEF都是半径为R的圆的内接三角形.
(1)求AF的长;
(2)通过对△ABC和△AEF的观察,请你先猜想谁的面积大,再证明你的猜想.

【答案】分析:(1)连接OF,过O作OG⊥AF于G,在直角△OGF中,利用三角函数即可求解;
(2)根据外接圆的半径是R,即可求得等腰直角△ABC和等边△AEF的面积,即可作出比较.
解答:解:(1)连接OF,过O作OG⊥AF于G,OF=R,
又∵△AEF为等边三角形,
∴∠AOF=120°,
∴∠GOF=60°,
∴GF=R,则AF=R

(2)S△ABC<S△AEF
∵直角△ABC是等腰直角三角形.
∴AB=2R,
∴AC=R,
∴S△ABC=R2

∴S△ABC<S△AEF
点评:本题主要考查了正多边形与圆的计算,正确理解等腰直角三角形的斜边就是外接圆的直径,正多边形的计算可以转化为直角三角形的计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等腰直角三角形AOB的面积为S1,以点O为圆心,OA为半径的弧与以AB为直径的半圆围成的图形的面积为S2,则S1与S2的关系是(  )
A、S1>S2B、S1<S2C、S1=S2D、S1≥S2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰直角三角形ABC中,∠C=90°,AD为∠CAB的平分线,DE⊥AB于E,AC=4,则△BDE的周长为(  )
A、4
B、6
C、4
2
D、4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江模拟)如图,等腰直角三角形ABC中,AC=BC>3,点M在AC上,点N在CB的延长线上,MN交AB于点O,且AM=BN=3,则S△AMO与S△BNO的差是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋90°后得到△CBE.
(1)求∠DCE的度数;
(2)当AB=10,AD:DC=2:3时,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰直角三角形△ABC中,∠ACB=90°,点D是BC的中点,CE⊥AD于点F交AB于点E,CH是AB上的高交AD于点G.
(1)找出图中的全等三角形;
(2)找出与∠ADC相等的角,并请说明理由.

查看答案和解析>>

同步练习册答案