精英家教网 > 初中数学 > 题目详情

【题目】如图,建筑物BC的屋顶有一根旗杆AB,从地面上点D处观测旗杆顶点A的仰角为50°,观测旗杆底部点B的仰角为45°.若旗杆的高度AB3.5米,则建筑物BC的高度约为_____米.(精确到1米,可用参考数据:sin50°≈0.8tan50°≈1.2

【答案】18

【解析】

根据题意设出BC的长,再由ACBCDC表示∠BDC和∠ADC的正切值,根据题意AB=3.5米列方程计算即可.

解:∵在△BCD中,∠BDC45°,∠BCD90°

BCDC

BCxm,则DCxmACAB+BC=(3.5+xm

∵在△ACD中,∠ADC50°,∠ACD90°

tanADCtan50°≈1.2

解得:x≈18

答:建筑物BC的高度约为18m

故答案为:18

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知y关于x的二次函数y=x-bx+b+b-5的图象与x轴有两个公共点.

1)求b的取值范围;

2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6-2m,求mn的值;

3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DEAC相交于点O.连接AEDCAD,当点E在什么位置时,四边形AECD为矩形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C为⊙O上一点,ADCD,(点D在⊙O外)AC平分∠BAD

(1)求证:CD是⊙O的切线;

(2)若DCAB的延长线相交于点E,且DE=12,AD=9,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=x2mxm1的图像交x轴于AB两点(AB分别位于坐标原点O的左、右两侧),交y轴于点C,且△ABC的面积为6

1)求这个二次函数的表达式;

2)若P为平面内一点,且PB=3PA,试求当△PAB的面积取得最大值时点P的坐标,并求此时直线PO将△ABC分成的两部分的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】[问题]小明在学习时遇到这样一个问题:求不等式x3+3x2x30的解集.

他经历了如下思考过程:

[回顾]

1)如图1,在平面直角坐标系xOy中,直线y1ax+b与双曲线y2交于A 13)和B(﹣3,﹣1),则不等式ax+b的解集是   

[探究]将不等式x3+3x2x30按条件进行转化:

x0时,原不等式不成立;

x0时,不等式两边同除以x并移项转化为x2+3x1

x0时,不等式两边同除以x并移项转化为x2+3x1

2)构造函数,画出图象:

y3x2+3x1y4,在同一坐标系中分别画出这两个函数的图象;

双曲线y4如图2所示,请在此坐标系中画出抛物线yx2+3x1.(不用列表)

3)确定两个函数图象公共点的横坐标:

观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3y4的所有x的值为   

[解决]

4)借助图象,写出解集:

结合探究中的讨论,观察两个函数的图象可知:不等式x3+3x2x30的解集为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八。问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的,那么乙也共有钱48文,问甲、乙二人原来各有多少钱?”

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点,当钟面显示330分时,分针垂直于桌面,点距离桌面的高度为公分,图②表示钟面显示345时,点距桌面的高度为公分,若钟面显示355时,点距离桌面的高度为__________公分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点分别在反比例函数的图象上.若,则的值为(

A.B.C.D.

查看答案和解析>>

同步练习册答案