精英家教网 > 初中数学 > 题目详情
7、已知一个正多边形的内角和是540°,则这个正多边形的一个外角是(  )
分析:根据多边形的内角和公式(n-2)•180°求出多边形的边数,再根据多边形的外角和是固定的360°,依此可以求出多边形的一个外角.
解答:解:∵正多边形的内角和是540°,
∴多边形的边数为540°÷180°+2=5,
∵多边形的外角和都是360°,
∴多边形的每个外角=360÷5=72°.
故选C.
点评:本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

归纳猜想:同学们,让我们一起进行一次研究性学习:
(1)如图1已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?

(2)如图2将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?

(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图2)?请说明理由.

(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).
通过以上猜想你可得到什么样的结论?请写出来.

查看答案和解析>>

科目:初中数学 来源: 题型:044

已知一个圆的半径为R.

(1)求这个圆的内接正n边形的周长和面积;

(2)利用(1)的结果填写下表:

观察上表,随着圆内接正多边形边数的增加,正多边形的周长(面积)有怎样的变化趋势,与圆的周长(面积)进行比较,你能得出什么结论?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

归纳猜想:同学们,让我们一起进行一次研究性学习:
(1)如图1已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?

(2)如图2将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?

(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图2)?请说明理由.

(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).
通过以上猜想你可得到什么样的结论?请写出来.

查看答案和解析>>

科目:初中数学 来源:2009年第7届“学用杯”全国数学知识应用竞赛九年级初赛试卷(A卷)(解析版) 题型:解答题

归纳猜想:同学们,让我们一起进行一次研究性学习:
(1)如图1已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?

(2)如图2将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?

(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图2)?请说明理由.

(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).
通过以上猜想你可得到什么样的结论?请写出来.

查看答案和解析>>

同步练习册答案