精英家教网 > 初中数学 > 题目详情
如图,已知在梯形ABCD中,AD∥BC,AB=CD,BC=8,∠B=60°,点M是边BC的中点,点E、F分别是边AB、CD上的两个动点(点E与点A、B不重合,点F与点C、D不重合),且∠EMF=120°.
(1)求证:ME=MF;
(2)试判断当点E、F分别在边AB、CD上移动时,五边形AEMFD的面积的大小是否会改变,请证明你的结论;
(3)如果点E、F恰好是边AB、CD的中点,求边AD的长.
分析:(1)过点M作MG⊥AB,MH⊥CD,先利用角角边证明△BGM与△CHM全等,然后根据全等三角形对应边相等可得MG=MH,然后根据角的关系推出∠EMG=∠FMH,再利用角角边证明△EGM与△FHM全等,根据全等三角形对应边相等即可证明ME=MF;
(2)根据(1)中结论,可知S△EMG=S△FMH,所以点E、F移动时,五边形AEMFD的面积始终等于五边形AGMHD的面积,不变;
(3)[方法一]连接AM,然后证明△BEM与△CFM全等,根据全等三角形对应角相等得到∠BME=∠CMF,从而推出ME是AB的垂直平分线,然后证明△ABM是等边三角形,再根据等边三角形的每一个角都是60°得到∠AMB=60°,然后证明四边形AMCD是平行四边形,根据平行四边形对边相等即可求解AD=MC.
[方法二:[或先证明出△BEM是直角三角形,根据直角三角形30°角所对的直角边等于斜边的一半求出BE的长度,从而得到AB的长度,再过点A作AK⊥BC,D作DL⊥BC,然后求出BK=LC=2,再根据四边形AKLD是矩形即可得解.]
解答:(1)证明:过点M分别作MG⊥AB,MH⊥CD,垂足为点G、H,
∵点M是边BC的中点,
∴BM=CM,
∵在梯形ABCD中,AD∥BC,AB=CD,
∴∠B=∠C=60°,
又∵MG⊥AB,MH⊥CD,
∴∠BGM=∠CHM=90°,
在△BGM与△CHM中,
∠B=∠C=60°
∠BGM=∠CHM=90°
BM=CM

∴△BGM≌△CHM(AAS),
∴MG=MH,∠BMG=∠CMH=30°,
即得∠GMH=∠EMF=120°,
又∵∠EMF=∠EMG+∠GMF,且∠GMH=∠GMF+∠FMH,
∴∠EMG=∠FMH,
在△EGM与△FHM中,
∠EMG=∠FMH
∠BGM=∠CHM=90°
MG=MH

△EGM≌△FHM(AAS),
∴ME=MF;

(2)解:当点E、F在边AB、CD上移动时,五边形AEMFD的面积的大小不会改变.
证明:∵△EGM≌△FHM,
∴S△EMG=S△FMH
∴S五边形AEMFD=S五边形AGMHD

(3)解:方法一:连接AM(在备用图一),
当点E、F恰好是边AB、CD的中点,且AB=CD,得BE=CF.
又∵ME=MF,BM=CM,
∴△BEM≌△CFM(SSS),
∴∠BME=∠CMF,
∵∠EMF=120°,
∴∠BME=
1
2
(∠180°-∠EMF)=
1
2
(180°-120°)=30°,
又∵∠B=60°,
∴∠BEM=180°-60°-30°=90°,
∵点E是边AB的中点,
∴ME是边AB的垂直平分线,
∴MA=MB,
∵∠B=60°,
∴△ABM是等边三角形,
∴∠AMB=60°,
∴∠AMB=∠C.
∴AM∥CD,
又∵AD∥MC,
∴四边形AMCD是平行四边形,
∴AD=CM,
∵BC=8,BM=CM,
∴CM=4,
∴AD=CM=4.

方法二:当点E、F恰好是边AB、CD的中点,且AB=CD,得BE=CF.
又∵ME=MF,BM=CM,
∴△BEM≌△CFM(SSS),
∴∠BME=∠CMF,
∵∠EMF=120°,
∴∠BME=
1
2
(∠180°-∠EMF)=
1
2
(180°-120°)=30°,
又∵∠B=60°,
∴∠BEM=180°-60°-30°=90°,
∵∠BME=30°,
∴BE=
1
2
BM=2,
∵E是边AB的中点,
∴AB=4,
分别过点A、D作AK⊥BC,DL⊥BC,垂足为点K、L(在备用图二中).
∵∠B=60°,
∴BK=
1
2
AB=2,
同理可得,CL=2,
∴KL=8-2-2=4,
∵AK⊥BC,DL⊥BC,AD∥BC,
∴四边形AKLD是矩形,
∴AD=KL=4.
点评:本题综合考查了等腰梯形的性质,全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的判定与性质,综合性较强,仔细分析题意作出辅助线是解题的关键,本题难度较大,对同学们能力要求较高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在梯形ABCD中,AD∥BC,AB=DC,且AC⊥BD,AC=6,则该梯形的高DE等于
 
.(结果不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC边上一个动点(E点不与B、C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.
(1)求证:四边形EFOG的周长等于2 OB;
(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2 OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,已知在梯形ABCD中,AD∥BC,AD+BC=CD,M是AB的中点,DM,CM是否分别是∠ADC和∠DCB的平分线?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在梯形ABCD中,AB∥CD,BC⊥AB,且AD⊥BD,CD=2,sinA=
23

求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在梯形ABCD中,AD∥BC,点E在边BC上,连接DE,AC.
(1)填空:
CD
+
DE
=
CE
CE
BC
-
BA
=
AC
AC

(2)求作:
AB
+
AD

查看答案和解析>>

同步练习册答案