精英家教网 > 初中数学 > 题目详情
15.如图,抛物线y=ax2+bx+c的顶点为C(1,4),且与y轴交于点D(0,3),与x轴交于A、B两点.
(1)求此抛物线的解析式;
(2)若直线BD的解析式为y=mx+n,请直接写出不等式ax2+bx+c>mx+n的解集;
(3)在第一象限的抛物线上是否存在一个点P,使得四边形ABPD的面积等于10?若存在,请求出点P的坐标;若不存在,请说明理由.

分析 (1)设抛物线的顶点式,代入D的坐标,根据待定系数法求得即可;
(2)根据(1)求得的解析式,令y=0,求得A、B的坐标,根据图象即可求得;
(3)假设存在一个点P,使得四边形ABPD的面积等于10,求得直线BD的解析式,过P点作PE⊥AB于E,交DB于F,设P(x,-x2+2x+3),则F(x,-x+3),求得PF,然后根据S△BPD=S△PDF+S△PFB=4,得到关于x的方程,解方程即可判断不存在x的值使方程成立,即可判定不存在这样的P点,使得四边形ABPD的面积等于10.

解答 解:(1)设抛物线的解析式为y=a(x-1)2+4,
代入D(0,3)得,3=a(0-1)2+4,解得a=-1,
∴y=-(x-1)2+4,
即此抛物线的解析式为y=-x2+2x+3;
(2)令y=0,则-x2+2x+3=0,
解得x1=-1,x2=3,
∴A(-1,0),B(3,0),
∵D(0,3),
∴不等式ax2+bx+c>mx+n的解集为:0<x<3;
(3)不存在,
理由:假设存在一个点P,使得四边形ABPD的面积等于10,
∵A(-1,0),B(3,0),D(0,3),
∴AB=4,OD=3,
∴S△ABD=$\frac{1}{2}$AB•OD=6,
∵四边形ABPD的面积等于10,
∴S△BPD=10-6=4,
把B、D的坐标代入y=mx+n得$\left\{\begin{array}{l}{3m+n=0}\\{n=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=-1}\\{n=3}\end{array}\right.$,
∴直线BD的解析式为y=-x+3,
过P点作PE⊥AB于E,交DB于F,如图,
设P(x,-x2+2x+3),在F(x,-x+3),
∴CF=(-x2+2x+3)-(-x+3)=-x2+3x,
∴S△BPD=S△PDF+S△PFB=$\frac{1}{2}$x(-x2+3x)+$\frac{1}{2}$(-x2+3x)•(3-x)=4,
整理得,3x2-9x+8=0,
∵△=(-9)2-4×3×8<0,
∴不存在这样的P点,使得四边形ABPD的面积等于10.

点评 本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,二次函数和不等式的关系以及四边形的面积等,(3)作出辅助线,把三角形分割成两个三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.抛物线y=-(x+2)2-3的开口方向是向下,对称轴是直线x=-2,顶点坐标是(-2,-3).当x=-2时,y有最大值是-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.四边形ABCD是一片沙漠地,点A,B在x轴上,E(2,6),F(3,4),折线OFE是流过这片沙漠的水渠,水渠东边的沙漠由甲承包绿化,水渠西边的沙漠由乙承包绿化,现甲、乙两人协商,在绿化规规划中须将流经沙漠中的水渠取直,并且要保持甲乙两人所承包的沙漠地的面积不变.若准备在AB上找一点P,使得水渠取直为EP,则点P的坐标为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在△ABC和△DEC中,∠ACB=∠DCE,AC=CD,BC=EC,且∠B=60°,AB与DE交于点P.
(1)求证:PC平分∠EPA;
(2)探究线段PE、PB和BC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,将矩形ABCD的一个角沿着直线EF翻折得到△EC′F,令△EC′F与矩形ABCD重合部分的面积为S,当点E与点D重合时停止,设CF=t,EC=2t,S与t的函数图象如图2所示:

(1)m=3;
(2)求S与r的函数关系式及t的取值范围;
(3)问:S是否为12?若能,求出t的值;不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知二次函数y=-x2+6x-8.求:
(1)用配方法将解析式化为顶点式,写出顶点坐标对称轴;
(2)画出此抛物线图象,利用图象回答下列问题:
①方程x2-6x十8=0的解是什么?
②x取什么值时,函数值大于0?
③x取什么值时,函数值小于0?
(3)将抛物线经过怎样的平移与坐标轴有两个交点,写出平移方法及平移后的解析式.(写出一种即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.指出下列抛物线的开口方向、对称轴和顶点坐标,并判断有最大值还是有最小值:
(1)y=x2-4x+5;
(2)y=-$\frac{1}{4}$x2-$\frac{3}{2}$x+4;
(3)y=-3x2-2x+1
(4)y=-$\frac{1}{2}$x2+2x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图所示,电路图上有A、B、C三个开关和一个小灯泡,闭合开关C或者同事闭合开关A、B,都可使小灯泡发光,现在任意闭合其中一个开关,则小灯泡发光的概率等于$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.小丽今年a岁,她的数学老师的年龄比小丽年龄的3倍小4岁,那么小丽的数学老师的岁数用a的代数式可表示为3a-4.

查看答案和解析>>

同步练习册答案