精英家教网 > 初中数学 > 题目详情
5.已知△ABC的边BC在直线l上,且BC=5,现把△ABC沿着直线l向右平移到△DEF的位置,若EC=2,则△ABC平移的距离为(  )
A.2B.3C.5D.1

分析 求出BE的长度,然后根据平移的性质,对应点连线的长度等于平移距离解答.

解答 解:∵BC=5,EC=2,
∴BE=BC-EC=5-2=3,
∵△ABC沿着直线l向右平移到△DEF的位置,
∴△ABC平移的距离为BE的长度,
∴△ABC平移的距离为3.
故选B.

点评 本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题主要利用了平移的距离等于对应点连线的线段长度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.如果把分式$\frac{2xy}{x-y}$中的x、y都扩大3倍,那么分式的值(  )
A.扩大3倍B.不变C.缩小3倍D.缩小6倍

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.勾股定理被誉为“几何学的基石”,《周髀算经》记载商高(约公元前11世纪)答周公问,说:“勾广三,股修四,经隔五”,所在在我国又称为“商高定理”.这个定理在外国称“毕达哥拉斯定理”或“百牛定理”或“驴桥定理”,至今已有近500种证明方法.
      小颖同学学习完相关内容后,在学校图书馆查阅资料时发现,文艺复兴时期意大利的著名画家达•芬奇用一张纸板经过以下操作验证了勾股定理:

      第一步:在一张长方形的纸板上画两个边长分别为a,b的正方形ABOF和正方形CDEO,连接BC,EF得到以AD为对称轴的六边形ABCDEF,如图①;
       第二步:将长方形纸板沿AD折叠,沿四边形ABCD的边剪下六边形ABCDEF,再沿AD把剩余的纸板剪开,得到两张纸板Ⅰ,Ⅱ,如图②;
      第三步:将纸板Ⅱ上下翻折后与纸板Ⅰ拼成如图③的图形;
      第四步:比较图①,图③中的两个六边形ABCDEF和六边形A′B′C′D′E′F′,由它们的面积相等可得结论.
     阅读后,小颖发现,验证的关键是证明图③中的四边形B′C′E′F′是正方形,由此才能得出结论,请你证明四边形B′C′E′F′是正方形并验证OB2+OC2=BC2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿顺流航行90km所用时间,与以最大航速逆流航行60km所用时间相等.设江水流速为vkm/h,则可列方程为$\frac{90}{30+v}$=$\frac{60}{30-v}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.十一点十分这一时刻,分针和时针的夹角是(  )
A.70°B.75°C.80°D.85°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.用扇形纸片制作一个圆锥的侧面,要求圆锥的高是3cm,底面周长是8πcm,则扇形的半径为5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).
(1)如图①,若∠AOB=90°,求y的值;
(2)如图②,若有AO=AB,则y的值为±2$\sqrt{6}$
(3)如图③,若在x轴上有一点C(x,0)且-1<x<3,BC⊥AC垂足为点C;若AB与y轴正半轴的所夹锐角为α,则tanα是否存在最大值?如果存在,直接写出这个最大值,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知正方形OABC的边长为a,如图,以O为坐标原点,OA,OC所在直线为坐标轴建立直角坐标系,直线AB、CB与反比例函数y=$\frac{k}{x}$(k>0)图象交于P,Q两点,连接OP,OQ,PQ.若a=4,且BP=AP,则k=8;若k=8$\sqrt{3}$,且∠POQ<30°,则边长a的取值范围是$\sqrt{8\sqrt{3}}$<a<2$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.不等式组 $\left\{{\begin{array}{l}{\frac{x+1}{2}<1}\\{2x-1≤3x}\end{array}}\right.$的整数解的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案