16£®ÈçͼÊǵÚÆß½ì¹ú¼ÊÊýѧ½ÌÓý´ó»áµÄ»á»ÕʾÒâͼ£¬Ö÷Ìâͼ°¸ÊÇÓÉÒ»Á¬´®ÈçͼËùʾµÄÖ±½ÇÈý½ÇÐÎÑÝ»¯¶ø³ÉµÄ£®ÆäÖеĵÚÒ»¸öÈý½ÇÐÎOA1A2ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÇÒOA1=A1A2=A2A3¡­=A8A9=1£®
£¨1£©¸ù¾Ýͼʾ£¬Çó³öOA2µÄ³¤Îª$\sqrt{2}$£»OA4µÄ³¤Îª2£»OA6µÄ³¤Îª$\sqrt{6}$£®
£¨2£©Èç¹û°´´ËÑݱ䷽ʽһֱÁ¬Ðø×÷ͼµ½¡÷OAn-1An£¬ÔòÏ߶ÎOAnµÄ³¤ºÍ¡÷OAn-1AnµÄÃæ»ý·Ö±ðÊǶàÉÙ£¿£¨Óú¬nµÄ´úÊýʽ±íʾ£©
£¨3£©Èô·Ö±ðÓÃS1£¬S2£¬S3¡­S100±íʾ¡÷OA1A2£¬¡÷OA2A3£¬¡÷OA3A4¡­¡÷OA99A100µÄÃæ»ý£¬ÊÔÇó³öS12+S22+S32+¡­+S1002µÄÖµ£®

·ÖÎö £¨1£©ÀûÓù´¹É¶¨ÀíÒÀ´Î¼ÆËã¼´¿É£»
£¨2£©ÒÀ¾Ý£¨1£©µÄ¼ÆËãÕÒ³öÆäÖеĹæÂɿɵõ½OAnµÄ³¤£¬È»ºóÒÀ¾Ý¼ÆËã³öÇ°¼¸¸öÈý½ÇÐεÄÃæ»ý£¬È»ºóÒÀ¾Ý¹æÂɽâ´ðÇóµÃ¡÷OAn-1AnµÄÃæ»ý¼´¿É£»
£¨3£©Ê×ÏÈÒÀ¾ÝÌâÒâÁгöËãʽ£¬È»ºóÔÙÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©OA2=$\sqrt{O{{A}_{1}}^{2}+{A}_{1}{{A}_{2}}^{2}}$=$\sqrt{2}$£¬OA3=$\sqrt{O{{A}_{2}}^{2}+{A}_{2}{{A}_{3}}^{2}}$=$\sqrt{3}$£¬OA4=$\sqrt{O{{A}_{3}}^{2}+{A}_{3}{{A}_{4}}^{2}}$=$\sqrt{4}$=2£¬
¡­
OA6=$\sqrt{6}$
¹Ê´ð°¸Îª£º$\sqrt{2}$£»2£»$\sqrt{6}$£®
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºOAn=$\sqrt{n}$£®
S1=$\frac{1}{2}$¡Á1¡Á1=$\frac{1}{2}$£»
S2=$\frac{1}{2}$¡Á$\sqrt{2}$¡Á$\frac{\sqrt{2}}{2}$£»
S3=$\frac{1}{2}$¡Á$\sqrt{3}$¡Á1=$\frac{\sqrt{3}}{2}$£»
¡­
¡÷OAn-1AnµÄÃæ»ý=$\frac{\sqrt{n-1}}{2}$£®
£¨3£©S12+S22+S32+¡­+S1002=£¨$\frac{1}{2}$£©2+£¨$\frac{\sqrt{2}}{2}$£©2+£¨$\frac{\sqrt{3}}{2}$£©2+¡­+£¨$\frac{\sqrt{100}}{2}$£©2=$\frac{1+2+3+¡­+100}{4}$=1262.5£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éµÄÊǵÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÒÔ¼°¹´¹É¶¨ÀíµÄÔËÓúÍÀûÓùæÂɵÄ̽²é½â¾öÎÊÌ⣬ÕÒ³öÆäÖеĹæÂÉÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãB×ø±êΪ£¨1£¬-1£©£¬µãC×ø±êΪ£¨4£¬0£©£¬ÒÔBCΪ±ßÔÚBCµÄÉÏ·½×÷Ò»¸öÕý·½ÐÎABCD£¬µãAÔÚyÖáÉÏ£¬¹ýµãA£¬B£¬C×÷Ò»ÌõÅ×ÎïÏߣ®
£¨1£©ÔÚÏ߶ÎBCÏ·½µÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹S¡÷BCPµÄÃæ»ý×î´ó£¿Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»Èô´æÔÚ£¬Ö±½Óд³öµãP×ø±ê£®
£¨2£©°ÑÅ×ÎïÏßÏòÉÏƽÒÆm£¨m£¾0£©¸öµ¥Î»£¬Ê¹µÃÅ×ÎïÏßʼÖÕÓëÕý·½ÐÎABCDµÄ±ßÓÐ4¸ö½»µã£¬Ö±½Óд³ömµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®½«Å×ÎïÏßy=£¨x+3£©2-1ÏÈÏòÉÏƽÒÆ2¸öµ¥Î»£¬ÔÙÏò×óƽÒÆ1¸öµ¥Î»ºó£¬µÃµ½µÄÅ×ÎïÏß½âÎöʽΪy=£¨x+4£©2+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ä³µØÇøijÔÂÇ°Á½ÖÜ´ÓÖÜÒ»ÖÁÖÜÎåÿÌìµÄ×îµÍÆøÎÂÊÇ£¨µ¥Î»£º¡æ£©x1£¬x2£¬x3£¬x4£¬x5£¬ºÍx1+1£¬x2+2£¬x3+3£¬x4+4£¬x5+5£¬ÈôµÚÒ»ÖÜÕâÎåÌìµÄƽ¾ùÆøÎÂΪ7¡æ£¬ÔòµÚ¶þÖÜÕâÎåÌìµÄƽ¾ùÆøÎÂΪ£¨¡¡¡¡£©
A£®7¡æB£®8¡æC£®9¡æD£®10¡æ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®2015Äê4Ô·ֵÄÄá²´¶ûÇ¿ÕðÔø¾­µ¼ÖÂÖé·åÑ©±À£¬ÔÚÖé·åÇÀÏÕʱ£¬Ðè8×éµÇɽ¶ÓÔ±²½ÐÐÔËËÍÎï×Ê£¬ÒªÇóÿ×é·ÖÅäµÄÈËÊýÏàͬ£¬Èô°´Ã¿×éÈËÊý±ÈÔ¤¶¨ÈËÊý¶à·ÖÅä1ÈË£¬Ôò×ÜÊý»á³¬¹ý100ÈË£»Èô°´Ã¿×éÈËÊý±ÈÔ¤¶¨ÈËÊýÉÙ·ÖÅä1ÈË£¬Ôò×ÜÊý²»¹»90ÈË£¬ÄÇôԤ¶¨Ã¿×é·ÖÅäµÄÈËÊýÊÇ£¨¡¡¡¡£©
A£®10ÈËB£®11ÈËC£®12ÈËD£®13ÈË

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èô²»µÈʵÊýa£¬bÂú×ã5£¨a-b£©+$\sqrt{5}$£¨b-c£©+£¨c-a£©=0£¬Çó$\frac{£¨c-b£©£¨c-a£©}{£¨a-b£©^{2}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®½öµ±a=1£¬b=-2£¬c=3ʱ£¬µÈʽax2-bx+c=x2+2x+3³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔĶÁÏÂÁвÄÁÏ£¬²¢½â¾öºóÃæµÄÎÊÌ⣮
²ÄÁÏ£ºÒ»°ãµØ£¬n¸öÏàͬµÄÒòÊýaÏà³Ë£º$\underset{\underbrace{a•a¡­a}}{n¸ö}$¼ÇΪan£®Èç23=8£¬´Ëʱ£¬3½Ð×öÒÔ2Ϊµ×8µÄ¶ÔÊý£¬¼ÇΪlog28£¨¼´log28=3£©£®Ò»°ãµØ£¬Èôan=b£¨a£¾0ÇÒa¡Ù1£¬b£¾0£©£¬Ôòn½Ð×öÒÔaΪµ×bµÄ¶ÔÊý£¬¼ÇΪlogab£¨¼´logab=n£©£¬Èç34=81£¬Ôò4½Ð×öÒÔ3Ϊµ×81µÄ¶ÔÊý£¬¼ÇΪlog381£¨¼´log381=4£©£®
ÎÊÌ⣺£¨1£©¼ÆËãÒÔϸ÷¶ÔÊýµÄÖµ£ºlog24=2£»log216=4£»log264=6£®
£¨2£©¹Û²ì£¨1£©ÖÐÈýÊý4¡¢16¡¢64Ö®¼äÂú×ãÔõÑùµÄ¹Øϵʽ£¬È»ºóÀûÓÃ4¡¢16¡¢64Ö®¼äµÄÊýÁ¿¹Øϵ²ÂÏëlog24¡¢log216¡¢log264Ö®¼äÓÖÂú×ãÔõÑùµÄ¹Øϵʽ£¿´ð£ºlog24¡¢log216¡¢log264¹ØϵʽΪlog24+log216=log264£®
£¨3£©ÓÉ£¨2£©µÄ½á¹û£¬ÇëÄãÄܹéÄɳö£ºlogaM+logaN=logaM+logaN=logaMN£¨a£¾0ÇÒa¡Ù1£¬M£¾0£¬N£¾0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÍõÄÌÄÌÊÇÉçÇø·þÎñÖÐÐĵÄÈÈÐÄ×ÔÔ¸Õߣ¬ÎªÁ˳O¹«Òæ»ù½ð£¬½ñÄê´ºÌ죬ËýÿÌìÔ糿´ÓÊйû¶³³§ÒÔÿºÐ0.8ÔªµÄ¼Û¸ñ¹º½øaºÐÐÂÏʹû¶³£¬È»ºóµ½ÈËȺ¾Û¼¯´¦ÒÔÿºÐ1ÔªµÄ¼Û¸ñ³öÊÛ£¬Æ½³£°×ÌìÒ»Ìì¿Éƽ¾ùÊÛ³öbºÐ¹û¶³£¬Ë«ÐÝÈÕ°×ÌìÒ»Ìì¿É¶àÊÛ³ö20%µÄ¹û¶³£¬Ã¿ÌìÍíÉÏÁùµã¹ýºó£¬ÍõÄÌÄ̱㽫ʣÓàµÄ¹û¶³½µ¼Û´¦Àí£¬ÒÔÿºÐ0.5ÔªµÄ¼Û¸ñÈ«²¿ÂôÍ꣮
£¨1£©ÇëÓú¬a¡¢bµÄʽ×Ó·Ö±ð±íʾÍõÄÌÄÌƽ³£Ã¿ÌìµÄÊÕÈëºÍË«ÐÝÈÕÿÌìµÄÊÕÈ룻
£¨2£©ÍõÄÌÄÌÒ»¸öÔ£¨30Ì죬º¬4¸öË«ÐÝÈÕ£©¿ÉÊÕÈë¶àÉÙÔª£¿£¨Óú¬a¡¢bʽ×Ó±íʾ£©
£¨3£©µ±a=800£¬b=600ʱ£¬ÇóÍõÄÌÄÌƽ¾ùÿÔÂʵ¼Ê¿É³ï¼¯¶àÉÙÔªµÄ¹«Òæ»ù½ð£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸