精英家教网 > 初中数学 > 题目详情
6.某公司今年投资100万元购买生产设备,生产某种产品,已知这种产品的生产成本为每件10元,经过市场调研发现,该产品的销售单价定在15元到30元之间较为合理,生产的产品能全部销售,且该产品的年销售量y(万元)与销售单价x(元/件)之间的函数关系式为y=40-x(15≤x≤30).
(1)当销售单价定为每件26元时,该产品的年销售量为多少万件?
(2)求今年的年获利W(万元)与销售单价x(元/件)之间的函数关系式;
(3)求今年的年获利W(万元)的最大值和最小值.

分析 (1)把x=26代入函数关系式,即可得到结论;
(2)根据题意得即可得到结论;
(3)二次函数的最大值即为所求.

解答 解:(1)当x=26时,y=40-x=40-26=14(万件);

(2)根据题意得:W=(40-x)(x-10)=-x2+50x-400;

(3)由(2)知:W=-x2+50x-400=-(x-25)2+225,
∵a=-1<0,
∴年获利W有最大值,
当x=25时,W最大=225(万元);

点评 本题考查了二次函数的性质在实际生活中的应用.最大利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.有一些分别标有1,2,4,8,16,…的按大小顺序摆放的卡片,你能拿到相邻的3张卡片,使得这些卡片上的数之和是302吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在Rt△ABC中,∠C=90°,a,b分别为∠A,∠B的对边,sinA=$\frac{1}{3}$,a=2,求b与cosA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.AD是△ABC的中线,DE=DF.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读理解:“分割、拼凑法”是几何证明中常用的方法.苏科版八上数学第一章《全等三角形》中,有以下两道题,其中问题1中的图1分割成两个全等三角形,而问题2是“HL定理”的证明,却将图2两个直角三角形拼成了一个等腰三角形图3.
请按照上面的思路,补全问题1、2的解答:
问题1:已知:如图1,在△ABC中,AB=AC.求证:∠B=∠C.
问题2:如图2,在△ABC和△A1B1C1中,∠C=∠C1=90°,AB=A1B1,AC=A1C1
求证:△ABC≌△A1B1C1(补全证明过程).
证明:把两个直角三角形如图3所示拼在一起仿照上面的方法解答问题:
问题3:如图4,△ABC中,∠ACB=90°,四边形CDEF是正方形,AE=5,BE=3.求阴影部分的面积和.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.阅读下面的文字,完成解答过程.
(1)$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,则$\frac{1}{2007×2008}$=$\frac{1}{2007}$-$\frac{1}{2008}$,并且用含有n的式子表示发现的规律.
(2)根据上述方法计算:$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{2006×2007}$.
(3)根据(1),(2)的计算,我们可以猜测下列结论:$\frac{1}{n(n+k)}$=$\frac{1}{k}$($\frac{1}{n}$-$\frac{1}{n+k}$) (其中n,k均为正整数),并计算$\frac{1}{1×4}$+$\frac{1}{4×7}$+$\frac{1}{7×10}$+…+$\frac{1}{2005×2008}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知△ABC中,AB=AC,AD平分∠BAC,求证:BD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.其中正确的结论有②③④(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图所示,已知△BAE和△CAF为等腰直角三角形.求证:
(1)EC=BF;
(2)EC⊥BF.

查看答案和解析>>

同步练习册答案