A. | (3+2$\sqrt{13}$) cm | B. | $\sqrt{97}$ cm | C. | $\sqrt{85}$ cm | D. | $\sqrt{109}$ cm |
分析 把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.
解答 解:第一种情况:把我们所看到的前面和上面组成一个平面,
则这个长方形的长和宽分别是9和4,
则所走的最短线段是$\sqrt{{4}^{2}+{9}^{2}}$=$\sqrt{97}$;
第二种情况:把我们看到的左面与上面组成一个长方形,
则这个长方形的长和宽分别是7和6,
所以走的最短线段是$\sqrt{{7}^{2}+{6}^{2}}$=$\sqrt{85}$;
第三种情况:把我们所看到的前面和右面组成一个长方形,
则这个长方形的长和宽分别是10和3,
所以走的最短线段是$\sqrt{{3}^{2}+1{0}^{2}}$=$\sqrt{109}$;
三种情况比较而言,第二种情况最短.
故选(C).
点评 本题主要考查的是平面展开-最短路径问题,解决此题的关键是明确线段最短这一知识点,然后把长方体的一些面展开到一个平面内,求出最短的线段.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2与-$\root{3}{-8}$ | B. | -2与-$\frac{1}{2}$ | C. | -$\sqrt{2}$与|-$\sqrt{2}$| | D. | 2与$\sqrt{(-2)^{2}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com