精英家教网 > 初中数学 > 题目详情

【题目】请阅读下列材料,并完成相应的任务:

阿基米德折弦定理

阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.

阿基米德折弦定理:如图1,ABBC的两条弦(即折线ABC是圆的一条折弦),BC>AB,M的中点,则从MBC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.

下面是运用“截长法”证明CD=AB+BD的部分证明过程.

证明:如图,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点, ∴MA=MC ...

任务:(1)请按照上面的证明思路,写出该证明的剩余部分;

(2)填空:如图(3),已知等边△ABC内接于,AB=2,D为圆上一点,∠ABD=45°,AE⊥BD与点E,则△BDC的周长是

【答案】(1)详见解析;(2)2+2.

【解析】

(1)如图2,在CB上截取CG=AB,连接MA,MB,MCMG,首先证明MBA≌△MGC(SAS),进而得出MB=MG,再利用等腰三角形的性质得出BD=GD,即可得出答案;

(2)如图3,截取BF=CD,连接AF,AD,CD.首先证明ABFACD(SAS),进而得出AF=AD,以及CD+DE=BE,进而求出DE的长即可得出答案.

(1)证明:如图2,在CB上截取CG=AB,连接MA,MB,MCMG.

M的中点,

MA=MC.

MBAMGC

∴△MBA≌△MGC(SAS),

MB=MG,

又∵MDBC,

BD=GD,

DC=GC+GD=AB+BD;

(2)解:如图3,截取BF=CD,连接AF,AD,CD,

由题意可得:AB=AC,ABF=ACD,

ABFACD

∴△ABFACD(SAS),

AF=AD,

AEBD,

FE=DE,则CD+DE=BE,

∵∠ABD=45°,AB=2

BE=

BD+CD=2BE=2

∵△ABC是等边三角形,

BC=AB=2,

BDC的周长是2+2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:

请结合图表完成下列各题:

(1)①表中a的值为 ,中位数在第 组;

频数分布直方图补充完整;

(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?

(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.

组别

成绩x分

频数(人数)

第1组

50≤x<60

6

第2组

60≤x<70

8

第3组

70≤x<80

14

第4组

80≤x<90

a

第5组

90≤x<100

10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区为加快美丽乡村建设,建设秀美幸福薛城,对AB两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2A类村庄和5B类村庄共投人资金1140万元.

(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?

(2)乙镇3A类美丽村庄和6B类美丽村庄的改建共需资金多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面内的两条直线有相交和平行两种位置关系

1)如图a,若ABCD,点PABCD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+D,得∠BPD=∠B﹣∠D.将点P移到ABCD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;

2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)

3)根据(2)的结论求图d中∠A+B+C+D+E+F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点Px轴的垂线,交线段AB于点D,再过点PPEx轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.

1)若0x≤6,请写出yx的函数关系式.

2)若x6,请写出yx的函数关系式.

3)在同一坐标系下,画出以上两个函数的图象.

4)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某轮船沿正北方向航行,在点处测得灯塔在北偏西方向上,轮船以每小时海里的速度航行小时到达后,测得灯塔在北偏西方向上,问轮船到达灯塔的正东方向时,轮船距灯塔有多远?(结果精确到海里,参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);当﹣1<x<3时,y0,其中正确的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察表格:根据表格解答下列问题:

x

0

1

2

ax2

0

1

4

ax2+bx+c

﹣3

-4

﹣3

(l)a,b,c的值

(2)在如图的直角坐标系中画出函数y=ax2+bx+c的图象,并根据图象,直接写出当x取什么实数时,不等式ax2+bx+c>﹣3成立;

(3)该图象与x轴两交点从左到右依次分别为A、B,与y轴交点为C,求过这三个点的外接圆的半径.

查看答案和解析>>

同步练习册答案