精英家教网 > 初中数学 > 题目详情

阅读下面材料,再回答问题:

一般地,如果函数x=f(x)对于自变量取值范围的的任意x,都有f(-x)=-f(x),那么y=f(x)就叫做奇函数;如果y=f(x)对于自变量取值范围内的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函数.

例如:f(x)=x3+x,当x取任意实数时,f(-x)=(-x)3+(-x)=-x3-x=-(x3+x),即f(-x)=-f(x),因此f(x)=x3+x为奇偶数.

又如f(x)=|x|,当x取任意实数时,f(-x)=|-x|=|x|=f(x),即f(-x)=f(x),因此f(x)=|x|是偶函数.

问题(1):下列函数中:①y=x4;②y=x2+1;③y=;④y=;⑤y=x+.奇函数有________,偶函数有________(只填序号).

问题(2):请你再分别写出一个奇函数、一个偶函数.

答案:
解析:

  (1)③⑤,①②

  (2)奇函数y=,偶函数y=x2.(答案不唯一).


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面材料,再回答问题:
一般地,如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=-f(x),那么y=f(x)就叫做奇函数;如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函数.
例如:f(x)=x3+x
当x取任意实数时,f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)
即f(-x)=-f(x)
所以f(x)=x3+x为奇函数
又如f(x)=|x|
当x取任意实数时,f(-x)=|-x|=|x|=f(x)
即f(-x)=f(x)
所以f(x)=|x|是偶函数
问题(1):下列函数中
①y=x4②y=x2+1③y=
1
x3

y=
x+1
y=x+
1
x

所有奇函数是
 
,所有偶函数是
 
(只填序号)
问题(2):请你再分别写出一个奇函数、一个偶函数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

24、阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”.
解决下列问题:
(1)菱形的“二分线”可以是
菱形的一条对角线所在的直线

(2)三角形的“二分线”可以是
三角形一边中线所在的直线.

(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”,并说明你的画法.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面材料,再回答问题.
一般地,如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=f(x).那么y=f(x)就叫偶函数.如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=-f(x).那么y=f(x)就叫奇函数.
例如:f(x)=x4
当x取任意实数时,f(-x)=(-x)4=x4∴f(-x)=f(x)∴f(x)=x4是偶函数.
又如:f(x)=2x3-x.
当x取任意实数时,∵f(-x)=2(-x)3-(-x)=-2x3+x=-(2x3-x)∴f(-x)=-f(x)∴f(x)=2x3-x是奇函数.
问题1:下列函数中:①y=x2+1②y=
5
x3
y=
x+1
y=x+
1
x
⑤y=x-2-2|x|
是奇函数的有
 
;是偶函数的有
 
(填序号)
问题2:仿照例证明:函数④或⑤是奇函数还是偶函数(选择其中之一)     (4分)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下面材料,再回答问题.
一般地,如果函数y的自变量x在a<x<b范围内,对于任意x1,x2,当a<x1<x2<b时,总是有y1<y2(yn是与xn对应的函数值),那么就说函数y在a<x<b范围内是增函数.
例如:函数y=x2在正实数范围内是增函数.
证明:在正实数范围内任取x1,x2,若x1<x2
则y1-y2=x12-x22=( x1-x2)( x1+x2
因为x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是当x1<x2时,y1<y2
所以函数y=x2在正实数范围内是增函数.
问题:
(1)下列函数中.①y=-2x(x为全体实数);②y=-
2
x
(x>0);③y=
1
x
(x>0);在给定自变量x的取值范围内,是增函数的有

(2)对于函数y=x2-2x+1,当自变量x
>1
>1
时,函数值y随x的增大而增大.
(3)说明函数y=-x2+4x,当x<2时是增函数.

查看答案和解析>>

科目:初中数学 来源:2012届湖北省宜昌市长阳县九年级上学期期末检测数学试卷(带解析) 题型:解答题

阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。
解决下列问题:
(1)菱形的“二分线”可以是                                   
(2)三角形的“二分线”可以是                                 
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.

查看答案和解析>>

同步练习册答案