精英家教网 > 初中数学 > 题目详情

【题目】如图为二次函数的图象,则下列说法:①,其中正确的个数为(

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

根据抛物线的开口向下可知a<0,由此可判断①;根据抛物线的对称轴可判断②;根据x=1y的值可判断③;根据抛物线与x轴交点的个数可判断④;根据x=-2时,y的值可判断⑤.

抛物线开口向下,∴a<0,故①错误;

∵抛物线与x轴两交点坐标为(-1,0)、(3,0),

∴抛物线的对称轴为x==1,2a+b=0,故②正确;

观察可知当x=1时,函数有最大值,a+b+c>0,故③正确;

∵抛物线与x轴有两交点坐标,

>0,故④正确;

观察图形可知当x=-2时,函数值为负数,即4a-2b+c<0,故⑤正确,

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购. 经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.

(1)求甲、乙两种型号设备的价格;

(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;

(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有四张质地均匀,大小完全相同的卡片,在其正面分别标有数字﹣1,﹣2,2,3,把卡片背面朝上洗匀,从中随机抽出一张后,不放回,再从中随机抽出一张,则两次抽出的卡片所标数字之和为正数的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,∠BAC=40°,点D在直线BC上,CD =CA ,请画出图形,并直接写出∠BDA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于二次函数,以下结论:①抛物线交轴有两个不同的交点;②不论取何值,抛物线总是经过一个定点;③设抛物线交轴于两点,若,则④抛物线的顶点在图象上;⑤抛物线交轴于点,若是等腰三角形,则.其中正确的序号是(

A. ①②⑤ B. ②③④ C. ①④⑤ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:

(1)未降价之前,某商场衬衫的总盈利为    元.

(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利   元,平均每天可售出   件(用含x的代数式进行表示)

(3)请列出方程,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形的对称轴上找点,使得均为等腰三角形,则满足条件的点_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AE平分BAD,交BC于点E.

(1)在AD上求作点F,使点F到CD和BC的距离相等;

(要求:尺规作图,保留作图痕迹,不写作法)

(2)判断四边形AECF是什么特殊四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.

(1)求∠BDF的大小;

(2)求CG的长.

查看答案和解析>>

同步练习册答案