4£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖª¾ØÐÎABCDµÄÈý¸ö¶¥µãB£¨4£¬0£©£¬C£¨8£¬0£©£¬D£¨8£¬8£©£¬Å×ÎïÏßy=ax2+bx¹ýA£¬CÁ½µã£¬¶¯µãP´ÓµãA³ö·¢£¬ÑØÏ߶ÎABÏòÖÕµãBÔ˶¯£¬Í¬Ê±µãQ´ÓµãC³ö·¢£¬ÑØÏ߶ÎCDÏòÖÕµãDÔ˶¯£¬ËٶȾùΪÿÃë1¸öµ¥Î»³¤¶È£¬Ô˶¯Ê±¼äΪtÃ룬¹ýµãP×÷PE¡ÍAB½»ACÓÚµãE£®
£¨1£©Ö±½Óд³öµãAµÄ×ø±ê£¬²¢Çó³öÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©¹ýµãE×÷EF¡ÍADÓÚµãF£¬½»Å×ÎïÏßÓÚµãG£¬µ±tΪºÎֵʱ£¬¡÷AGCµÄÃæ»ý×î´ó£¿×î´óֵΪ¶àÉÙ£¿
£¨3£©Á¬½ÓEQ£¬ÔÚµãP£¬QÔ˶¯µÄ¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚij¸öʱ¿Ì£¬Ê¹µÃÒÔC£¬E£¬QΪ¶¥µãµÄ¡÷CEQΪµÈÑüÈý½ÇÐΣ¿Èç¹û´æÔÚ£¬ÇëÖ±½Óд³öÏàÓ¦µÄtÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÓÚËıßÐÎABCDΪ¾ØÐΣ¬ËùÒÔAµãÓëDµã×Ý×ø±êÏàͬ£¬AµãÓëBµãºá×ø±êÏàͬ£»
£¨2£©¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃPE¡¢PBµÄ³¤£¬¿ÉµÃEµã×ø±ê£¬¸ù¾ÝƽÐÐÓÚyÖáÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄ×Ý×ø±ê¼õ½ÏСµÄ×Ý×ø±ê£¬¿ÉµÃGEµÄ³¤£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ¶þ´Îº¯Êý£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿ÉµÃ´ð°¸£»
£¨3£©Èô¹¹³ÉµÈÑüÈý½ÇÐΣ¬ÔòÈýÌõ±ßÖÐÓÐÁ½Ìõ±ßÏàµÈ¼´¿É£¬ÓÚÊÇ¿É·ÖEQ=QC£¬EC=CQ£¬EQ=ECÈýÖÖÇé¿öÌÖÂÛ£®ÈôÓÐÁ½ÖÖÇé¿öʱ¼äÏàͬ£¬ÔòÈý±ß³¤¶ÈÏàͬ£¬ÎªµÈÑüÈý½ÇÐΣ®

½â´ð ½â£º£¨1£©ÒòΪµãBµÄºá×ø±êΪ4£¬µãDµÄ×Ý×ø±êΪ8£¬AD¡ÎxÖᣬAB¡ÎyÖᣬËùÒÔµãAµÄ×ø±êΪ£¨4£¬8£©£®
½«A£¨4£¬8£©¡¢C£¨8£¬0£©Á½µã×ø±ê·Ö±ð´úÈëy=ax2+bxµÃ$\left\{\begin{array}{l}{16a+4b=8}\\{64a+8b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=4}\end{array}\right.$£®
¹ÊÅ×ÎïÏߵĽâÎöʽΪ£ºy=-$\frac{1}{2}$x2+4x£»
£¨2£©¡ßPE¡ÎBC£¬¡à¡÷APE¡×¡÷ABC£¬$\frac{PE}{BC}$=$\frac{AP}{AB}$£¬¼´$\frac{PE}{4}$=$\frac{AP}{8}$£¬PE=$\frac{1}{2}$AP=$\frac{1}{2}$t£¬PB=8-t£¬
E£¨4+$\frac{1}{2}$t£¬8-t£©£¬GµãµÄ×ø±êΪ£¨4+$\frac{1}{2}$t£¬-$\frac{1}{8}$t2+8£©£¬
GE=£¨-$\frac{1}{8}$t2+8£©-£¨8-t£©=-$\frac{1}{8}$t2+t£¬
S¡÷AGC=$\frac{1}{2}$GE•£¨xC-xA£©=$\frac{1}{2}$£¨-$\frac{1}{8}$t2+t£©£¨8-4£©=-$\frac{1}{4}$£¨t-4£©2+4£¬
µ±t=4ʱ£¬¡÷AGCµÄÃæ»ý×î´ó£¬×î´óֵΪ4£»
£¨3£©¢Ùµ±EQ=QCʱ£¬¡ßQ£¨8£¬t£©£¬E£¨4+$\frac{1}{2}$t£¬8-t£©£¬QC=t£¬
ËùÒÔ¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ£¬µÃ£º
£¨$\frac{1}{2}$t-4£©2+£¨8-2t£©2=t2£®
ÕûÀíµÃ13t2-144t+320=0£¬
½âµÃt=$\frac{40}{13}$»òt=$\frac{104}{13}$=8£¨´ËʱE¡¢CÖغϣ¬²»Äܹ¹³ÉÈý½ÇÐΣ¬ÉáÈ¥£©£®
¢Úµ±EC=CQʱ£¬
ÒòΪE£¨4+$\frac{1}{2}$t£¬8-t£©£¬C£¨8£¬0£©£¬QC=t£¬
ËùÒÔ¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ£¬µÃ£º
£¨4+$\frac{1}{2}$t-8£©2+£¨8-t£©2=t2£®
ÕûÀíµÃt2-80t+320=0£¬t=40-16$\sqrt{5}$£¬t=40+16$\sqrt{5}$£¾8£¨´ËʱQ²»ÔÚ¾ØÐεıßÉÏ£¬ÉáÈ¥£©£®
¢Ûµ±EQ=ECʱ£¬
ÒòΪQ£¨8£¬t£©£¬E£¨4+$\frac{1}{2}$t£¬8-t£©£¬C£¨8£¬0£©£¬
ËùÒÔ¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ£¬µÃ£º£¨$\frac{1}{2}$t-4£©2+£¨8-2t£©2=£¨4+$\frac{1}{2}$t-8£©2+£¨8-t£©2£¬
½âµÃt=0£¨´ËʱQ¡¢CÖغϣ¬²»Äܹ¹³ÉÈý½ÇÐΣ¬ÉáÈ¥£©»òt=$\frac{16}{3}$£®
ÓÚÊÇt1=$\frac{16}{3}$£¬t2=$\frac{40}{13}$£¬t3=40-16$\sqrt{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬Å×ÎïÏßµÄÇó·¨ÊǺ¯Êý½âÎöʽÖеÄÒ»ÖÖ£¬Í¨³£Çé¿öÏÂÓôý¶¨ÏµÊý·¨£¬¼´ÏÈÁз½³Ì×飬ÔÙÇóδ֪ϵÊý£¬ÕâÖÖ·½·¨±¾Ìâ±È½ÏÊʺϣ®¶ÔÓÚѹÖáÌâÖеĶ¯µãÎÊÌâ¡¢¼«ÖµÎÊÌ⣬Ïȸù¾ÝÌõ¼þ¡°ÒÔ¾²Öƶ¯¡±£¬ÓÃδ֪ϵÊý±íʾ¸÷×ÔµÄ×ø±ê£¬Èç¹ûÄܹ¹³É¶þ´Îº¯Êý£¬¼´¿Éͨ¹ýÅä·½»ò¶¥µã×ø±ê¹«Ê½ÇóÆ伫ֵ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+2mx+2n=0ÓÐÁ½¸öÕûÊý¸ùÇҳ˻ýΪÕý£¬¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ìy2+2ny+2m=0ͬÑùÒ²ÓÐÁ½¸öÕûÊý¸ùÇҳ˻ýΪÕý£¬¸ø³öÈý¸ö½áÂÛ£º¢ÙÕâÁ½¸ö·½³ÌµÄ¸ù¶¼¸º¸ù£»¢Ú£¨m-1£©2+£¨n-1£©2¡Ý2£»¢Û-1¡Ü2m-2n¡Ü1£¬ÆäÖÐÕýÈ·½áÂ۵ĸöÊýÊÇ3¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁÐÃüÌâµÄÄæÃüÌâÒ»¶¨³ÉÁ¢µÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢Ù¶Ô¶¥½ÇÏàµÈ£»¢Úͬλ½ÇÏàµÈ£¬Á½Ö±ÏßƽÐУ»¢ÛÈôa=b£¬Ôò|a|=|b|£»¢ÜÈôx=3£¬Ôòx2-3x=0£®
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®£¨1£©½â·½³Ì£º2x2-5x+2=0
£¨2£©½â²»µÈʽ£º$\left\{\begin{array}{l}{\frac{2x-1}{3}£¾\frac{3x-5}{4}}\\{\frac{x+2}{4}-\frac{x}{5}£¾1}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¼ÆË㣺£¨$\sqrt{3}$-1£©0+|-3|-$\sqrt{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ABÓë¡ÑOÏàÇÐÓÚµãA£¬ACΪ¡ÑOµÄÖ±¾¶£¬ÇÒAC=6£¬CD¡ÎBO£¬CD½»¡ÑOÓÚD£¬Á¬½ÓBD£®
£¨1£©ÇóÖ¤£ºBDÓë¡ÑOÏàÇУ»
£¨2£©ÈôBO+CD=11£¬ÇóABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èç¹û¡Ï2ÊÇ¡Ï1µÄÓà½Ç£¬¡Ï3ÊÇ¡Ï1µÄ²¹½Ç£¬ÄÇô¡Ï2ºÍ¡Ï3µÄ¹ØϵÊÇ£¨¡¡¡¡£©
A£®¡Ï3-¡Ï2=90¡ãB£®¡Ï3+¡Ï2=90¡ãC£®¡Ï3=¡Ï2D£®Ã»ÓйØϵ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬Rt¡÷ABCÖУ¬¡ÏABC=90¡ã£¬ÒÔABΪֱ¾¶µÄ¡ÑO½»ACÓÚµãD£¬EΪBCµÄÖе㣬Á¬½ÓDE¡¢OD£®
£¨1£©ÇóÖ¤£ºDEÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©ËıßÐÎOBEDÄÜ·ñÊÇÁâÐΣ¿Èç¹ûÄÜ£¬ÊÔ˵Ã÷Rt¡÷ABC»¹Ó¦Âú×ãʲôÌõ¼þ£»Èç¹û²»ÄÜ£¬Ò²Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¶¨Ò壺M={a£¬b£¬c}ΪÊýÖµ½Ï´óÕߣ¬Ò»´Îº¯Êýy=kx+b¹ýµã£¨-2£¬0£©ÇÒÓëM={x2+2£¬$\frac{3}{x}$£¨x£¾0£©£¬-$\frac{3}{x}$£¨x£¼0£©}ÓÐÇÒÖ»ÓÐÒ»¸ö½»µã£¬Ôòk=1»ò3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸