【题目】如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是 ▲ .
【答案】-5<x<-1或x>0.
【解析】
不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.
不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.
而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.
由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-5.
∴由图知,当-5<x<-1或x>0时,直线y=k1x-b图象在双曲线图象下方.
∴不等式k1x<+b的解集是-5<x<-1或x>0.
科目:初中数学 来源: 题型:
【题目】如果直线l把△ABC分割后的两个部分面积相等,且周长也相等,那么就把直线l叫做△ABC的“完美分割线”,已知在△ABC中,AB=AC,△ABC的一条“完美分割线”为直线l,且直线l平行于BC,若AB=2,则BC的长等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC中,点D、E、F分别是AB、AC、BC中点,点M在CB的延长线上,△DMN为等边三角形,且EN经过F点.下列结论:①EN=MF ②MB=FN ③MP·DP=NP·FP ④MB·BP=PF·FC,正确的结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,双曲线y=kx﹣1(k≠0,x>0)与边AB、BC分别交于点N、F,连接ON、OF、NF.若∠NOF=45°,NF=2,则点C的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长比是( )
A.1:2B.2:1C.1:3D.3:1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校教学楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,BC∥AD,BE⊥AD,斜坡AB长为26米,斜坡AB的坡比为i=12:5,为了减缓坡面防山体滑坡,保障安全,学校决定对该斜坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.
(1)求改造前坡顶到地面的距离BE的长;
(2)如果改造时保持坡脚A不动,坡顶B沿BC向左移11米到F点处,问这样改造能确保安全吗?(tan48.8°≈1.14)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:样本容量为 ,a= ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是矩形ABCD边AB上一动点(不与点B重合),过点E作EF⊥DE交BC于点F,连接DF,已知AB=4cm,AD=2cm,设A,E两点间的距离为xcm,△DEF面积为ycm2.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)确定自变量x的取值范围是 ;
(2)通过取点、画图、测量、分析,得到了x与y的几组值,如表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(说明:补全表格时相关数值保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF面积最大时,AE的长度为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知顶点为C(0,﹣3)的抛物线D1:y=ax2+b(a≠0)与x轴交于A,B两点,直线L:y=x+m过顶点C和点B.
(1)求抛物线D1:y=ax2+b(a≠0)的解析式;
(2)点D(0,),在x轴上任取一点Q(x,0),连接DQ,作线段DQ的垂直平分线l1,过点Q作x轴的垂线,记l2,l2与l1的交点为P(x,y),在x轴上多次改变点Q的位置,相应的点P也在坐标系中形成了曲线路径D2,写出点P(x,y)的路径D2所满足的关系式(即x,y所满足的关系式),能否通过平移、轴对称或旋转变换,由抛物线D1得到曲线D2?请说明理由.
(3)抛物线D1上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com