精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,如图正方形的顶点坐标分别为,点坐标分别为,且,以为边作正方形.设正方形与正方形重叠部分面积为.

1)①当点与点重合时,的值为______;②当点与点重合时,的值为______.

2)请用含的式子表示,并直接写出的取值范围.

【答案】1)①1;②;(2.

【解析】

1①②根据点F的坐标构建方程即可解决问题.
2)分四种情形:①如图1中,当1≤m≤2时,重叠部分是四边形BEGN.②如图2中,当0m1时,重叠部分是正方形EFGH.③如图3中,-1m时,重叠部分是矩形AEHN.④如图4中,当-≤m0时,重叠部分是正方形EFGH.分别求解即可解决问题.

解:(1)①当点F与点B重合时,由题意3m=3
m=1
②当点F与点A重合时,由题意3m=-1
m=
故答案为1

2)①当时,如图1.

.

.



②当时,如图2.

.

.



③当时,如图3.

.



④当时,如图4.

.

.


综上,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形的两条边分别在轴和轴上,已知点、点.

(1)若把矩形沿直线折叠,使点落在点处,直线的交点分别为,求折痕的长;

(2)在(1)的条件下,点轴上,在平面内是否存在点,使以为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;

(3)如图,若边上的一动点,在上取一点,将矩形绕点顺时针旋转一周,在旋转的过程中,的对应点为,请直接写出的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,∠ABD、CDB的平分线BE、DF分别交边AD、BC于点E、F.

(1)求证:四边形BEDF是平行四边形;

(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC中,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q.

(1)求证:BP=2PQ;

(2)若PE=1,PQ=3,试求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线a b被直线c所截,现给出下列四种条件:

①∠2=∠6 ②∠2=∠8 ③∠1+∠4180° ④∠3=∠8,其中能判断是ab的条件的序号是(

A. ①② B. ①③ C. ①④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点FBGAE于G,BG=,则梯形AECD的周长为( )

A.22 B.23 C.24 D.25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A、B、C、D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将不完整的条形图补充完整.

(3)若居民区有8000人,请估计爱吃D粽的人数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.

查看答案和解析>>

同步练习册答案