精英家教网 > 初中数学 > 题目详情

如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E是⊙O上一点,D是AM上一点,连接DE并延长交BN于点C,且OD∥BE,OF∥BN.
(1)求证:DE与⊙O相切;
(2)求证:OF=数学公式CD.

证明:(1)连接OE,
∵AM与圆O相切,
∴AM⊥OA,即∠OAD=90°,
∵OD∥BE,
∴∠AOD=∠ABE,∠EOD=∠OEB,
∵OB=OE,
∴∠ABE=∠OEB,
∴∠AOD=∠OEB,
∴∠AOD=∠EOD,
在△AOD和△EOD中,

∴△AOD≌△EOD(SAS),
∴∠OED=∠OAD=90°,
则DE为圆O的切线;

(2)在Rt△BCO和Rt△ECO中,

∴Rt△BCO≌Rt△ECO,
∴∠BOC=∠EOC,
∵∠AOD=∠EOD,
∴∠DOC=∠EOD+∠EOC=×180°=90°,
∵AM、BN为圆O的切线,
∴AM⊥AB,BN⊥AB,
∴AM∥BN,
∵OF∥BN,
∴AM∥OF∥BN,
又O为AB的中点,
∴F为CD的中点,
则OF=CD.
分析:(1)连接OE,由AM与圆O相切,利用切线的性质得到OA与AM垂直,即∠OAD=90°,根据OD与BE平行,利用两直线平行得到一对内错角相等,一对同位角相等,再由OB=OE,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OA=OE,OD为公共边,利用SAS得出三角形AOD与三角形EOD全等,利用全等三角形的对应角相等得到∠OED=90°,即OE垂直于ED,即可得证;
(2)连接OC,由CD与CB为圆的切线,利用切线的性质得到一对直角相等,由OB=OE,OC为公共边,利用HL得出两直角三角形全等,进而得到∠BOC=∠EOC,利用等量代换及平角定义得到∠COD=90°,即三角形COD为直角三角形,由OF与BN平行,AM与BN平行,得到三线平行,由O为AB的中的,利用平行线等分线段定理得到F为CD的中点,利用直角三角形斜边上的中线等于斜边的一半即可得证.
点评:此题考查了切线的判定与性质,全等三角形的判定与性质,平行线的性质,以及等腰三角形的性质,熟练掌握切线的判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案