证明:(1)连接OE,
∵AM与圆O相切,
∴AM⊥OA,即∠OAD=90°,
∵OD∥BE,
∴∠AOD=∠ABE,∠EOD=∠OEB,
∵OB=OE,
∴∠ABE=∠OEB,
∴∠AOD=∠OEB,
∴∠AOD=∠EOD,
在△AOD和△EOD中,
,
∴△AOD≌△EOD(SAS),
∴∠OED=∠OAD=90°,
则DE为圆O的切线;
(2)在Rt△BCO和Rt△ECO中,
,
∴Rt△BCO≌Rt△ECO,
∴∠BOC=∠EOC,
∵∠AOD=∠EOD,
∴∠DOC=∠EOD+∠EOC=
×180°=90°,
∵AM、BN为圆O的切线,
∴AM⊥AB,BN⊥AB,
∴AM∥BN,
∵OF∥BN,
∴AM∥OF∥BN,
又O为AB的中点,
∴F为CD的中点,
则OF=
CD.
分析:(1)连接OE,由AM与圆O相切,利用切线的性质得到OA与AM垂直,即∠OAD=90°,根据OD与BE平行,利用两直线平行得到一对内错角相等,一对同位角相等,再由OB=OE,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OA=OE,OD为公共边,利用SAS得出三角形AOD与三角形EOD全等,利用全等三角形的对应角相等得到∠OED=90°,即OE垂直于ED,即可得证;
(2)连接OC,由CD与CB为圆的切线,利用切线的性质得到一对直角相等,由OB=OE,OC为公共边,利用HL得出两直角三角形全等,进而得到∠BOC=∠EOC,利用等量代换及平角定义得到∠COD=90°,即三角形COD为直角三角形,由OF与BN平行,AM与BN平行,得到三线平行,由O为AB的中的,利用平行线等分线段定理得到F为CD的中点,利用直角三角形斜边上的中线等于斜边的一半即可得证.
点评:此题考查了切线的判定与性质,全等三角形的判定与性质,平行线的性质,以及等腰三角形的性质,熟练掌握切线的判定与性质是解本题的关键.