精英家教网 > 初中数学 > 题目详情
6.如图所示,在△ABC中,D是BC延长线上一点,CD=BC,E是CA延长线上一点,AE=2AC,若AD=BE,求证:△ABC是直角三角形.

分析 由于告诉了AE=2AC,故延长AC至F,使CF=AC,连接BF,则△ADC≌△FBC,从而AD=BF,又AD=BE,从而BF=BE,即三角形BEF是等腰三角形,再根据AE=2AC,可得A是EF中点,由三线合一可得BA垂直EF.

解答 证明:如图,延长AC至F,使CF=AC,连接BF,

∵BC=CD,
在△ADC和△FBC中,
$\left\{\begin{array}{l}{AC=FC}\\{∠ACD=∠FCB}\\{DC=BC}\end{array}\right.$
∴△ADC≌△FBC(SAS),
∴BF=AD,
∵AD=BE,
∴BF=BE,
∵AE=2AC,
∴AE=AF,
∴BA⊥EF,
∴△ABC是直角三角形.

点评 本题主要考查了全等三角形的判定与性质,等腰三角形“三线合一”的性质,难度中等.由题目条件“AE=2AC”联想到中线倍长是解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,Rt△ABC的斜边AB在x轴上,AB=4,点B的坐标为(-1,0),点C在y轴的正半轴,线y=ax2+bx+c(a≠0)的图象经过点A,B,C
(Ⅰ)求y关于x的函数解析式;
(Ⅱ)设对称轴与抛物线交于点E,与AC交于点D,在对称釉上,是否存在点P,使以点P,C,D点的三角形与△ADE相似?若存在,请求出点P的坐标;若不存在,请说明理由
(Ⅲ)若在对称轴上有两个动点P和Q(点P在点Q的上方),且PQ=$\frac{\sqrt{3}}{3}$,请求出使四边形BCFE最小的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.不等式5-3x>3+2x的解集是x<$\frac{2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.阅读下面材料:
小红遇到这样一个问题:如图1,在四边形ABCD中,∠A=∠C=90°,∠D=60°,AB=4$\sqrt{3}$,BC=$\sqrt{3}$,求AD的长.
小红发现,延长AB与DC相交于点E,通过构造Rt△ADE,经过推理和计算能够使问题得到解决(如图2).
请回答:AD的长为6.
参考小红思考问题的方法,解决问题:
如图3,在四边形ABCD中,tanA=$\frac{1}{2}$,∠B=∠C=135°,AB=9,CD=3,求BC和AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC于点E,
(1)求证:PB=PE;
(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.
(3)在图1中,请直接写出线段PC,PA,CE之间的一个等量关系(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知:四边形ABCD中,AD=CD,对角线BD平分∠ADC,点E,F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接EF,AF,AE.
(1)求证:AF=EF;
(2)求证:∠EAF=∠ABD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?这时每周进多少辆最为适宜?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.某商场销售额3月份为16万元,5月份为25万元,则该商场这两个月销售额的平均增长率为(  )
A.20%B.25%C.30%D.35%

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.判断下列命题的真假,是假命题的举出反例.
①两个锐角的和是钝角
②一个角的补角大于这个角
③不相等的角不是对顶角.

查看答案和解析>>

同步练习册答案