精英家教网 > 初中数学 > 题目详情
抛物线y=-2x2开口方向是(  )
A.向上B.向下C.向左D.向右
D

试题分析:由题意分析可知抛物线y=-2x2开口方向是,向右,故选D
点评:本题属于对抛物线的开口的基本知识的理解和运用,考生要熟练把握抛物线开口的方向
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.

(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过PPMx轴,垂足为M,是否存在P点,使得以APM为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数中函数与自变量之间的部分对应值如下表所示,点在函数图象上,当时,则   (填“”或“”).

 
0
1
2
3
 

 

2
3
2
 
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC= 4cm.D、E分别为边AB、BC的中点,连结DE.点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在线段AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M在直线AQ上.设点P的运动时间为t(s).

(1)当点P在线段DE上运动时,线段DP的长为     cm(用含t的代数式表示)
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分的面积为S(cm2),求S与t的函数关系式.
(4)连结CD.当点N与点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中点处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的值(或取值范围).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

根据对徐州市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数的图象如图②所示.

(1)分别求出y1、y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时 获得的销售利润之和最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,ABC中,∠A=90º,AB=2㎝,AC=4㎝,动点P从点A出发,沿AB方向以1㎝/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1㎝s的速度向带你A运动,当点P到达点B时,P、Q两点同时停止运动.以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F,设点P的运动时间为t s,正方形APDE和梯形BCFQ重合部分的面积为S.

(1)当t=         s时,点P与点Q重合;
(2)当t=         s时,点D在QF上;
(3)当点P在Q、B两点之间(不包括Q、B两点)时,求S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知⊙P的半径为1,圆心P在抛物线上运动,当⊙P与轴相切时,圆心P的坐标为___________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,在下列说法中:

0;②;③
④当时,随着的增大而增大.正确的说法个数是(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有(  )
A.3个B.2个 C.1个D.0个

查看答案和解析>>

同步练习册答案