精英家教网 > 初中数学 > 题目详情
有一条直的等宽纸带,按如图所示进行折叠时,纸带重叠部分的等于 度.
75
观察纸条的上边由平角定义,折叠的性质,得2α+30°=180°,解得α=75°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点。
⑴该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由。

⑵试探究图②中BN、CN、CM、DN这四条线段之间的数量关系,写出你的结论,并说明理由。

⑶将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之 间所满足的数量关系(不需要证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE.
(1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换过程;若不是,请说明理由;
(2)若△BCD绕点B顺时针旋转,使点A,B,C不在同一直线上(如图(2)),则在旋转过程中:
①线段AD与EC的长度相等吗?请说明理由.
②锐角的度数是否改变?若不变,请求出的度数;若改变,请说明理由.
(注:等边三角形的三条边都相等,三个角都是60°)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为    ▲   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,图案是一个轴对称图形,直线AB、CD是它的对称轴,如果最大圆的半径为
4,那么阴影部分面积是(   )

A. 2π     B.4π       C. 6π     D.8π

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图形中,既是中心对称图形又是轴对称图形的是(     )
A.圆B.等边三角形C.平行四边形D.角

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是 __  __:___ __。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

动手操作(本小题满分7分)
如图在△ABC和△CDE中,AB=AC=CEBC=DC=DEAB>BC,∠BAC=∠DCE=∠,点BCD在直线l上,按下列要求画图(保留画图痕迹);

(1)画出点E关于直线l的对称点E’,连接CE’DE’
(2)以点C为旋转中心,将(1)中所得△CDE’ 按逆时针方向旋转,使得CE’CA重合,
得到△CD’E’’A).画出△CD’E’’A).解决下面问题:
①线段AB和线段CD’的位置关系是  ▲ ;理由是:     ▲      
②求∠的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△A可以由△ABC绕点 A顺
时针旋转90°得到(点与点B是对应点,点与点C是对应点),连接,则∠
的度数是             .

查看答案和解析>>

同步练习册答案