精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,求sin∠ABD的值.
分析:首先根据垂径定理得出∠ABD=∠ABC,然后由直径所对的圆周角是直角,得出∠ACB=90°,根据勾股定理算出斜边AB的长,再根据正弦的定义求出sin∠ABC的值,从而得出sin∠ABD的值.
解答:解:由条件可知:弧AC=弧AD,则∠ABD=∠ABC,
所以sin∠ABD=sin∠ABC=
AC
AB

AB为直径,BC=6,AC=8,可得AB=10,
∴sin∠ABD=
4
5
点评:本题主要考查了垂径定理及锐角三角函数的定义.
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
在直角三角形中,锐角的正弦为对边比斜边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案