精英家教网 > 初中数学 > 题目详情

在直角坐标系中,抛物线y1与抛物线y2关于y轴对称,抛物线y2与抛物线y3关于x轴对称,且y3=ax2+bx+c,则抛物线y1的解析式是


  1. A.
    y1=-ax2+bx+c
  2. B.
    y1=-ax2-bx+c
  3. C.
    y1=-ax2-bx-c
  4. D.
    y1=-ax2+bx-c
D
分析:根据y3的解析式及抛物线y2与抛物线y3关于x轴对称求出抛物线y2的解析式,再由抛物线y1与抛物线y2关于y轴对称可求出抛物线y1的解析式.
解答:∵y3=ax2+bx+c,抛物线y2与抛物线y3关于x轴对称
∴可得:抛物线y2的解析式为y2=-ax2-bx-c,
又抛物线y1与抛物线y2关于y轴对称
∴可得:y1=-ax2+bx-c
故选D.
点评:本题考查二次函数图象的几何变换,属于基础题,注意关于x轴对称横坐标不变,纵坐标加负号,关于y轴对称横坐标加负号,纵坐标不变.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网为了参加市科技节展览,同学们制造了一个截面为抛物线形的隧道模型,用了三种正方形的钢筋支架.在画设计图时,如果在直角坐标系中,抛物线的函数解析式为y=-x2+c,正方形ABCD的边长和正方形EFGH的边长之比为5:1,求:
(1)抛物线解析式中常数c的值;
(2)正方形MNPQ的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A精英家教网,B,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心,以AD为半径作⊙A.
①证明:当AD+CD最小时,直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:
 

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(32):2.3 二次函数的应用(解析版) 题型:解答题

如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心,以AD为半径作⊙A.
①证明:当AD+CD最小时,直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:______.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(52):2.8 二次函数的应用(解析版) 题型:解答题

为了参加市科技节展览,同学们制造了一个截面为抛物线形的隧道模型,用了三种正方形的钢筋支架.在画设计图时,如果在直角坐标系中,抛物线的函数解析式为y=-x2+c,正方形ABCD的边长和正方形EFGH的边长之比为5:1,求:
(1)抛物线解析式中常数c的值;
(2)正方形MNPQ的边长.

查看答案和解析>>

科目:初中数学 来源:2005年浙江省杭州市中考数学试卷(解析版) 题型:解答题

(2005•杭州)为了参加市科技节展览,同学们制造了一个截面为抛物线形的隧道模型,用了三种正方形的钢筋支架.在画设计图时,如果在直角坐标系中,抛物线的函数解析式为y=-x2+c,正方形ABCD的边长和正方形EFGH的边长之比为5:1,求:
(1)抛物线解析式中常数c的值;
(2)正方形MNPQ的边长.

查看答案和解析>>

同步练习册答案