【题目】(知识生成)我们知道,用两种不同的方法计算同一个几何图形的面积,可以得到一些代数恒等式.
例如:如图可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:
⑴ 根据如图,写出一个代数恒等式:
;
⑵ 利用⑴中得到的结论,解决下面的问题:若a+b+c=12,,
则 ;
⑶ 小明同学用如图中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+3b)的长方形,则x+y+z= ;
(知识迁移)⑷ 类似地,用两种不同的方法计算几何体的体积同样可以得到一些代数恒等式.如图表示的是一个边长为x的正方体挖去一个边长为2的小长方体后重新拼成一个新长方体.请你根据如图中两个图形的变化关系,写出一个代数恒等式.
【答案】⑴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc; ⑵ 90; ⑶ 12; ⑷ x3-4x=x(x-2)(x-2).
【解析】
(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;
(2)依据a2+b2+c2=(a+b+c)2-2ab-2ac-2bc,进行计算即可;
(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+3b)= 2a2+6ab+3b2,即可得到x,y,z的值.
(4)根据原几何体的体积=新几何体的体积,列式可得结论.
(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,
∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,
故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,
∵a+b+c=12,ab+ac+bc=27,
∴122=a2+b2+c2+2×27,
∴a2+b2+c2=144-54=90,
故答案为:90;
(3)由题意得:(2a+b)(a+3b)=xa2+yb2+zab,
∴2a2+7ab+3b2=xa2+yb2+zab,
,
∴x+y+z=12,
故答案为:12;
(4)∵原几何体的体积=x3-2×2x=x3-4x,新几何体的体积=(x+2)(x-2)x,
∴x3-4x=(x+2)(x-2)x.
故答案为:x3-x=(x+2)(x-2)x.
科目:初中数学 来源: 题型:
【题目】(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.
(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;
(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两地相距100千米,甲,乙两人骑车分别从A,B两地相向而行,图中和分别表示他们各自到A地的距离千米与时间小时的关系,根据图中提供的信息,解答下列问题:
图中哪条线表示甲到A地的距离与时间的关系?
甲,乙两人的速度分别是多少?
求P点的坐标,并解释P点的实际意义.
甲出发多长时间后,两人相距30千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.
(1)这50名同学捐款的众数为元,中位数为元;
(2)求这50名同学捐款的平均数;
(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:线段、、;
求作:△ABC,使, , ;
【答案】答案见解析
【解析】试题分析:先画出与相等的角,再画出的长,连接,则即为所求三角形.
试题解析:如图所示:①先画射线BC,
②以α的顶点为圆心,任意长为半径画弧,分别交α的两边交于为A′,C′;
③以相同长度为半径,B为圆心,画弧,交BC于点F,以F为圆心,C′A′为半径画弧,交于点E;
④在BF上取点C,使CB=a,以B为圆心,c为半径画圆交BE的延长线于点A,连接AC,
结论:△ABC即为所求三角形.
【题型】解答题
【结束】
15
【题目】已知:线段, ,求作: ,使, .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:
-3 -5 0 +3 +4
(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,最大乘积是 ;
(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小的商是 ;
(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算的式子.(至少写出两种)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,点D、点E分别在AB、AC上,BD=AE,连接BE、CD交于点P,作EH⊥CD于H.
(1)求证:△CAD≌△BCE;(2)求证:PE=2PH;(3)若PB=PH,求∠ACD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B是数轴上的两个点,点A表示的数为﹣2,点B在点A右侧,距离A点12个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.
(1)填空:①数轴上点B表示的数为 ;
②数轴上点P表示的数为 (用含t的代数式表示).
(2)设AP和PB的中点分别为点M,N,在点P的运动过程中,线段M N的长度是否发生变化?若变化,请说明理由;若不变,求出线段M N的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com