12£®Èçͼ£¬ÒÑÖªÅ×ÎïÏß¾­¹ýµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬3£©Èýµã£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãMÊÇÏ߶ÎBCÉϵĵ㣨²»ÓëB£¬CÖغϣ©£¬¹ýµãM×÷MN¡ÎyÖá½»Å×ÎïÏßÓÚµãN£¬ÈôµãMµÄºá×ø±êΪm£¬Á¬½ÓNB¡¢NC£¬ÊÇ·ñ´æÔÚm£¬Ê¹¡÷BNCµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬ÇómµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Ö±ÏßMN½»xÖáÓÚµãD£¬E£¨t£¬0£©ÊÇxÖáÉÏÒ»¶¯µã£¬FÊÇÏ߶ÎNDÉÏÒ»µã£¬µ±¡÷BNCµÄÃæ»ý×î´óʱ£¬ÊÇ·ñ´æÔÚt£¬Ê¹¡ÏEFC=90¡ã£¿Èô´æÔÚ£¬Çó³ötµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÅ×ÎïÏß¹ýµãA¡¢B¿ÉÉè¸ÃÅ×ÎïÏߵĽâÎöʽΪy=a£¨x+1£©£¨x-3£©£¬´úÈëµãCµÄ×ø±ê¼´¿ÉÇó³öaÖµ£¬´Ó¶øµÃ³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¼ÙÉè´æÔÚ£¬¸ù¾ÝµãB¡¢CµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¿ÉÇó³öÖ±ÏßBCµÄ½âÎöʽ£¬¸ù¾ÝµãMµÄºá×ø±êm£¬Óú¬mµÄ´úÊýʽ±íʾ³öµãM¡¢NµÄ×ø±ê£¬Í¨¹ý·Ö¸îÈý½ÇÐÎÇóÃæ»ý·¨¼´¿ÉÓú¬mµÄ¶þ´Îº¯Êý±íʾ³ö¡÷BNCµÄÃæ»ý£¬ÔÙÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿É½â¾ö×îÖµÎÊÌ⣻
£¨3£©½áºÏ£¨2£©ÕÒ³öµãM¡¢NµÄ×ø±ê£¬¹ýµãC×÷CG¡ÍNDÓÚµãG£®·ÖµãFÔÚÏ߶ÎNGºÍDGÉÏÁ½ÖÖÇé¿öÇótµÄÖµ£¬¢Ùµ±µãFÔÚÏ߶ÎNGÉÏʱ£¬¿Éͨ¹ý¹´¹É¶¨ÀíÇó³ötµÄ×î´óÖµ£»¢Úµ±µãFÔÚÏ߶ÎDGÉÏʱ£¬Í¨¹ýÏàËÆÈý½ÇÐεÄÐÔÖÊÕÒ³ötµÄ×îСֵ£®×ÛÉϼ´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏß¾­¹ýµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬
¡àÉè¸ÃÅ×ÎïÏߵĽâÎöʽΪy=a£¨x+1£©£¨x-3£©£¬
½«µãC£¨0£¬3£©´úÈëy=a£¨x+1£©£¨x-3£©Öеãº
3=a¡Á£¨0+1£©£¨0-3£©£¬½âµÃ£ºa=-1£¬
¡à¸ÃÅ×ÎïÏߵĽâÎöʽΪy=-£¨x+1£©£¨x-3£©=-x2+2x+3£®
£¨2£©¼ÙÉè´æÔÚ£®ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
¡ßµãB£¨3£¬0£©£¬C£¨0£¬3£©ÔÚÖ±Ïßy=kx+bÉÏ£¬
¡àÓÐ$\left\{\begin{array}{l}{0=3k+b}\\{3=b}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-x+3£®
¡ßµãMµÄºá×ø±êΪm£¬MN¡ÎyÖᣬ
¡àµãMµÄ×ø±êΪ£¨m£¬3-m£©£¨0£¼m£¼3£©£¬µãNµÄ×ø±êΪ£¨m£¬-m2+2m+3£©£¬
¡àÏ߶ÎMN=-m2+2m+3-£¨3-m£©=-m2+3m£®
S¡÷BNC=$\frac{1}{2}$MN•OB=-$\frac{3}{2}$m2+$\frac{9}{2}$m=-$\frac{3}{2}$$£¨m-\frac{3}{2}£©^{2}$+$\frac{27}{8}$£¬
¡àµ±m=$\frac{3}{2}$ʱ£¬S¡÷BNCÈ¡×î´óÖµ£¬×î´óֵΪ$\frac{27}{8}$£®
¹Ê´æÔÚm£¬Ê¹¡÷BNCµÄÃæ»ý×î´ó£¬´Ëʱm=$\frac{3}{2}$£¬S¡÷BNCµÄ×î´óֵΪ$\frac{27}{8}$£®
£¨3£©¼ÙÉè´æÔÚ£®
ÓÉ£¨2£©¿ÉÖª£¬µãM¡¢NµÄºá×ø±êΪ$\frac{3}{2}$£¬·Ö±ð´úÈëy=-x+3£¬y=-x2+2x+3ÖУ¬
µÃµãMµÄ×ø±êΪ£¨$\frac{3}{2}$£¬$\frac{3}{2}$£©£¬µãNµÄ×ø±êΪ£¨$\frac{3}{2}$£¬$\frac{15}{4}$£©£®
¹ýµãC×÷CG¡ÍNDÓÚµãG£®
¢Ùµ±µãFÔÚÏ߶ÎNGÉÏʱ£¬µãFÓëµãNÖغÏʱ£¬µãEµÄºá×ø±ê×î´ó£¬Èçͼ1Ëùʾ£®

ÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉÖª£º
CF2=$£¨\frac{3}{2}-0£©^{2}+£¨\frac{15}{4}-3£©^{2}$=$\frac{45}{16}$£¬EF2=$£¨t-\frac{3}{2}£©^{2}+£¨0-\frac{15}{4}£©^{2}$=t2-3t+$\frac{261}{16}$£¬EC2=£¨t-0£©2+£¨0-3£©2=t2+9£¬
ÔÚRt¡÷EFCÖУ¬CF2+EF2=EC2£¬¼´$\frac{45}{16}$+t2-3t+$\frac{261}{16}$=t2+9£¬
½âµÃ£ºt=$\frac{27}{8}$£¬¼´tµÄ×î´óֵΪ$\frac{27}{8}$£»
¢Úµ±µãFÔÚÏ߶ÎDGÉÏʱ£¬Èçͼ2Ëùʾ£®

ÉèFG=x£¨0£¼x£¼3£©£¬ÔòDF=3-x£¬
¸ù¾Ýͬ½ÇµÄÓà½ÇÏàµÈ£¬µÃ¡ÏFCG=¡ÏEFD£¬
¡à¡÷FCG¡×¡÷EFD£¬
¡à$\frac{FG}{ED}=\frac{CG}{FD}$£¬¼´$\frac{x}{DE}=\frac{\frac{3}{2}}{3-x}$£¬
¡àDE=$\frac{2}{3}$x£¨3-x£©=-$\frac{2}{3}$$£¨x-\frac{3}{2}£©^{2}$+$\frac{3}{2}$£¬
¡àµ±x=$\frac{3}{2}$ʱ£¬DEÈ¡×î´óÖµ$\frac{3}{2}$£¬´Ëʱ¶ÔÓ¦µÄtÖµ×îС£¬×îСֵΪ0£®
×ÛÉÏ¿ÉÖª£ºµ±¡÷BNCµÄÃæ»ý×î´óʱ£¬´æÔÚt£¬Ê¹¡ÏEFC=90¡ã£¬tµÄÈ¡Öµ·¶Î§Îª0¡Üt¡Ü$\frac{27}{8}$£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ¡¢·Ö¸îͼÐη¨ÇóÃæ»ýÒÔ¼°¹´¹É¶¨Àí£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽ£»£¨2£©ÀûÓ÷ָîͼÐη¨ÇóÈý½ÇÐεÄÃæ»ý£»£¨3£©·ÖÇé¿öÑ°ÕÒtµÄ×îÖµ£®±¾ÌâÊôÓÚÖеµÌ⣬£¨1£©£¨2£©Ïà¶Ô¼òµ¥£»£¨3£©ÓеãÄѶȣ¬ÔÙ½â¾ö¸ÃÎÊʱ£¬Í¨¹ý·Ö¶ÎÑ°ÕÒÁÙ½çµã£¬Çó³ötÖµµÄ×î´óÓë×îСֵ£¬´Ó¶øµÃ³ötµÄÈ¡Öµ·¶Î§£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®²»µÈʽ×é$\left\{\begin{array}{l}{2x+1¡Ý-1}\\{\frac{1+2x}{3}£¼x-1}\end{array}\right.$µÄ½â¼¯ÊÇx£¾4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¶ìÁ빫˾ÊÇÖØÇì×îÔçµÄ˽¼ÒÔ°ÁÖ£¬Ç°ÉíΪÀñÔ²£¬Êǹú¼Ò¼¶AAAÂÃÓξ°Çø£¬Ô²ÄÚÓÐÒ»Åþʤ¥£¬µÇÉϸßÂ¥ÄÜÐÀÉ͵½ÖØÇìµÄÓÅÃÀ¾°É«£¬ÖÜĩС¼ÎͬѧÓÎÀÀ¶ìÁ빫˾£¬Èçͼ£¬ÔÚAµã´¦¹Û²ìµ½Åþʤ¥¥µ×CµÄÑö½ÇΪ12¡ã£¬Â¥¶¥DµÄÑö½ÇΪ13¡ã£¬²âµÃˮƽ¾àÀëAE=1200m£¬BCµÄƶÈi=8£º15
£¨1£©ÊÔ¼ÆËãÅþʤ¥µÄ¸ß¶ÈCD£®£¨2£©Ð¡¼ÎʹÓüƲ½Æ÷¼Ç¼×Ô¼ºÃ¿Ìì×ß·µÄÇé¿ö£¬ÒÑÖªËýÔÚƽ·ÉÏÿ·ÖÖÓ×ߵIJ½Êý±ÈбÆÂÉÏÿ·ÖÖÓ×ߵIJ½ÊýµÄÁ½±¶ÉÙ50²½£¬ÔÚƽ·ÉÏÿһ²½²½³¤¶¼Îª0.5m£¬Ð±ÆÂÉÏÿһ²½²½³¤Îª0.51m£¬ÈôËýÔÚA´¦´ò¿ª¼Æ²½Æ÷£¬ÑØA-B-C·½ÏòÐÐÊ»£¬µ½´ïCʱ¼Æ²½Æ÷ÉÏÏÔʾ×ßƽ·ºÍÉÏбƵÄÔ˶¯Ê±¼äÏàͬ£¬Ôò¼Æ²½Æ÷ÉϼǼµÄƽ·ÿ·ÖÖÓ×߶àÉÙ²½£¿£¨²Î¿¼Êý¾Ý£ºtan12¡ã=0.2£¬tan13¡ã=0.23£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªE£¬F·Ö±ðΪÕý·½ÐÎABCDµÄ±ßBC£¬CDÉϵĵ㣬AF£¬DEÏཻÓÚµãG£¬µ±E£¬F·Ö±ðΪ±ßBC£¬CDµÄÖеãʱ£¬ÒÔÏÂÁ½¸ö½áÂÛ£º¢ÙAF=DE£»¢ÚAF¡ÍDE¶¼³ÉÁ¢£®ÊÔ̽¾¿£º
£¨1£©Èçͼ1£¬ÈôµãE²»ÊDZßBCµÄÖе㣬F²»ÊDZßCDµÄÖе㣬ÇÒCE=DFʱ£¬ÉÏÊö½áÂÛ¢Ù£¬¢ÚÊÇ·ñÈÔÈ»³ÉÁ¢£¿£¨ÇëÖ±½Ó»Ø´ð¡°³ÉÁ¢¡±»ò¡°²»³ÉÁ¢¡±£©£¬²»ÐèÒªÖ¤Ã÷£©
£¨2£©Èçͼ2£¬ÈôµãE£¬F·Ö±ðÔÚCBµÄÑÓ³¤ÏߺÍDCµÄÑÓ³¤ÏßÉÏ£¬ÇÒCE=DF£¬´Ëʱ£¬ÉÏÊö½áÂÛ¢Ù£¬¢ÚÊÇ·ñÈÔÈ»³ÉÁ¢£¿Èô³ÉÁ¢£¬Çëд³öÖ¤Ã÷¹ý³Ì£¬Èô²»³ÉÁ¢£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èçͼ3£¬ÔÚ£¨2£©µÄ»ù´¡ÉÏ£¬Á¬½ÓAEºÍEF£¬ÈôµãM£¬N£¬P£¬Q·Ö±ðΪAE£¬EF£¬FD£¬ADµÄÖеãʱ£¬ÇóÖ¤£ºËıßÐÎMNPQÊÇÕý·½ÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬½«Æ½ÐÐËıßÐÎABCDÈƵãAÄæʱÕëÐýת40¡ã£¬µÃµ½Æ½ÐÐËıßÐÎAB¡äC¡äD¡ä£¬ÈôµãB¡äÇ¡ºÃÂäÔÚBC±ßÉÏ£¬Ôò¡ÏDC¡äB¡äµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®60¡ãB£®65¡ãC£®70¡ãD£®75¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£¬AB¡ÎCD£¬½«¾ØÐÎEFGHµÄ¶¥µãEºÍF·Ö±ð·ÅÔÚÖ±ÏßABÓëCDÉÏ£¬Èô¡Ï1=40¡ã£¬Ôò¡ÏCFGµÄ¶ÈÊýµÈÓÚ130¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¼ÆËã9+£¨-5£©µÄ½á¹ûΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬¼ºÖªµãAÊÇ·´±ÈÀýº¯Êýy=$\frac{1}{x}$µÄͼÏóÓëÒ»´Îº¯Êýy=2x-1µÄͼÏóÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬µãPÊÇxÖáÉÏÒ»µã£¬µ±¡÷OAPΪµÈÑüÈý½ÇÐÎʱ£¬µãPµÄ×ø±êΪ£¨$\sqrt{2}$£¬0£©£¬£¨-$\sqrt{2}$£¬0£©£¬£¨2£¬0£©£¬£¨1£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈôA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©ÊǺ¯Êýy=-$\frac{1}{x}$ͼÏóÉϵÄÁ½µã£¬ÇÒx1£¼x2£¬Ôòy1Óëy2µÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£®y1£¾y2B£®y1=y2C£®y1£¼y2D£®²»ÄÜÈ·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸