精英家教网 > 初中数学 > 题目详情

【题目】24.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.

1)求证:四边形BFDE为平行四边形;

(2)若四边形BFDE为菱形,且AB=2,求BC的长.

【答案】(1)详见解析;(2)2

【解析】试题分析:(1)证△ABE≌△CDF,推出AE=CF,求出DE=BFDE∥BF,根据平行四边形判定推出即可;

2)求出∠ABE=30°,根据直角三角形性质求出AEBE,即可求出答案.

试题解析:(1四边形ABCD是矩形,

∴∠A=∠C=90°AB=CDAB∥CD

∴∠ABD=∠CDB

在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BEAD于点E.将点C翻折到对角线BD上的点N处,

∴∠ABE=∠EBD=∠ABD∠CDF=∠CDB

∴∠ABE=∠CDF

△ABE△CDF

∴△ABE≌△CDFASA),

∴AE=CF

四边形ABCD是矩形,

∴AD=BCAD∥BC

∴DE=BFDE∥BF

四边形BFDE为平行四边形;

2四边形BFDE为菱形,

∴BE=ED∠EBD=∠FBD=∠ABE

四边形ABCD是矩形,

∴AD=BC∠ABC=90°

∴∠ABE=30°

∵∠A=90°AB=2

AE=BE=2AE=

BC=AD=AE+ED=AE+BE=+=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).

(1)写出点A、B的坐标

(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,写出A′B′C′的三个顶点坐标

(3)△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,点DE分别在边ABAC的中点,将△ADE沿过DE折叠,使点A落在BCF处,若∠B=50°,则∠BDF=___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=BC,ABC=90°,点F为AB延长线上一点,点E在BC上,BE=BF,连接AE,EF和CF.

(1)求证:ABE≌△CBF

(2)若CAE=30°,求EFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CO1ABC的中线,过点O1O1E1ACBC于点E1,连接AE1CO1于点O2;过点O2O2E2ACBC于点E2,连接AE2CO1于点O3;过点O3O3E3ACBC于点E3,…,如此继续,可以依次得到点O4,O5,…,On和点E4,E5,…,En,则O2016E2016=_____AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线与反比例函数的图像在第一象限有一个公共点,其横坐标为1,则一次函数的图像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线经过两点,与x轴交于另一点C,顶点为D

求该抛物线的解析式及点CD的坐标;

经过点BD两点的直线与x轴交于点E,若点F是抛物线上一点,以ABEF为顶点的四边形是平行四边形,求点F的坐标;

如图是抛物线上的点,Q是直线AP上方的抛物线上一动点,求的最大面积和此时Q点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】被誉为中原第一高楼的郑州会展宾馆(俗称玉米楼”)坐落在风景如画的如意湖畔,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华决定用自己学到的知识测量玉米楼的高度.如图,刘明在点C处测得楼顶B的仰角为45°,王华在高台上的D处测得楼顶的仰角为40°.若高台DE的高为5米,点D到点C的水平距离EC47.4米,ACE三点共线,求玉米楼”AB的高度.(参考数据:sin40°≈0.64cos40°≈0.77tan40°≈0.84,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是等边三角形ABC内一点,PA=3,PB=4, PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,∠APB的度数______

查看答案和解析>>

同步练习册答案