【题目】如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的一个动点(不与B,C重合),EF⊥AB,EG⊥AC,垂足分别为F,G.
(1)求证:;
(2)FD与DG是否垂直?若垂直,请给出证明;若不垂直,请说明理由;
(3)当的值为多少时,△FDG为等腰直角三角形?
【答案】(1)见解析;(2)FD与DG垂直,理由见解析;(3)当时,△FDG为等腰直角三角形,理由见解析.
【解析】
(1)由比例线段可知,我们需要证明△ADC∽△EGC,由两个角对应相等即可证得;
(2)由矩形的判定定理可知,四边形AFEG为矩形,根据矩形的性质及相似三角形的判定可得到△AFD∽△CGD,从而不难得到结论;
(3)先判断出DF=DG,再利用同角的余角相等判断出∠ADF=∠CDG,∠BAD=∠C,得出△ADF≌△CDG,即可得出结论.
(1)证明:在△ADC和△EGC中,
∵∠ADC=∠EGC,∠C=∠C,
∴△ADC∽△EGC.
∴.
(2)解:FD与DG垂直.
理由如下:
在四边形AFEG中,
∵∠FAG=∠AFE=∠AGE=90°,
∴四边形AFEG为矩形.
∴AF=EG.
∵,
∴.
又∵△ABC为直角三角形,AD⊥BC,
∴∠FAD=∠C=90°﹣∠DAC,
∴△AFD∽△CGD.
∴∠ADF=∠CDG.
∵∠CDG+∠ADG=90°,
∴∠ADF+∠ADG=90°.
即∠FDG=90°.
∴FD⊥DG.
(3)解:当的值为1时,△FDG为等腰直角三角形,理由如下:
由(2)知,∠FDG=90°,
∵△DFG为等腰直角三角形,
∴DF=DG,
∵AD是BC边上的高,
∴∠ADC=90°,
∴∠ADG+∠CDG=90°,
∵∠FDG=90°,
∴∠ADG+∠ADF=90°,
∴∠ADF=∠CDG,
∵∠CAD+∠BAD=90°,∠C+∠CAD=90°,
∴∠BAD=∠C,
∴△ADF≌△CDG(AAS),
∴AD=CD,
∵∠ADC=90°,
∴∠C=45°=∠B,
∴AB=AC,
即:当的值为1时,△FDG为等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价元件与每天销售量件之间满足如图所示的关系.
求出y与x之间的函数关系式;
写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB).且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根,线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线AB上一个动点,点Q是直线CD上一个动点.
(1)求线段AB的长度:
(2)过动点P作PF⊥OA于F,PE⊥OB于E,点P在移动过程中,线段EF的长度也在改变,请求出线段EF的最小值:
(3)在坐标平面内是否存在一点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,分别以AB,AC为斜边作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,连接DE.若DE=5,则BC长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A、B、C坐标分别为(0,1)、(0,5)、(3,0),D是平面内一点,且∠ADB=45°,则线段CD的最大值是__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋中装有4张卡片,分别印有数字1、2、3、6,这4张卡片除印有的数字不同外,其余都相同.
(1)搅匀后从中任意摸出1张卡片,摸到印有奇数卡片的概率为_______;
(2)搅匀后从中任意摸出1张卡片,将该卡片印有的数字记为,再从剩余3张卡片中任意摸出1张卡片,将该卡片印有的数字记为,请用列表或画树状图的方法求出点在反比例函数图像上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题 :如图1,在四边形中,点为上一点,∠=∠=∠=90°,求证:.
(2)探究:如图2,在四边形中,点为上一点,当∠=∠=∠时,上述结论是否依然成立?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com