精英家教网 > 初中数学 > 题目详情
将函数y=
3
3
x
的图象向上平移2个单位,得到一个新函数,平移前后的两个函数图象分别与y轴交于O、A两点,与直线x=-
3
分别交于C、B两点.
(1)求这个新函数的解析式;
(2)判断以A、B、C、O四点为顶点的四边形形状,并说明理由;
(3)若(2)中的四边形(不包括边界)始终覆盖着二次函数y=x2-2bx+b2+
1
2
的图象的一部分,求满足条件的实数b的取值范围.
(1)y=
3
3
x+2
.(2分)

(2)答:四边形AOCB为菱形(3分)
由题意可得ABCO,BCAO,AO=2
∴四边形AOCB为平行四边形(4分)
易得A(0,2),B(-
3
,1)

由勾股定理可得AB=2,
∴AB=AO(5分)
∴平行四边形AOCB为菱形(6分)

(3)二次函数y=x2-2bx+b2+
1
2

化为顶点式为:y=(x-b)2+
1
2
(7分)
∴抛物线顶点在直线y=
1
2
上移动
假设四边形的边界可以覆盖到二次函数,
则B点和A点分别是二次函数与四边形接触的边界点
将B(-
3
,1)

代入二次函数,
解得b=-
3
-
2
2
b=-
3
+
2
2
(不合题意,舍去)(8分)
将A(0,2),代入二次函数,
解得b=
6
2
b=-
6
2
(不合题意,舍去)(9分)
所以实数b的取值范围:-
3
-
2
2
<b<
6
2
.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=mx2+2mx-3m(m≠0)的顶点为H,与x轴交于A、B两点(B点在A点右侧),点H、B关于直线l:y=
3
3
x+
3
对称,过点B作直线BKAH交直线l于K点.
(1)求A、B两点坐标,并证明点A在直线l上;
(2)求此抛物线的解析式;
(3)将此抛物线向上平移,当抛物线经过K点时,设顶点为N,直接写出NK的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PDAC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c的图象过(1,-1)、(2,1)、(-1,1)三点,求二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:直线y=-2x+4交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物线y=ax2+bx+c(a≠0)经过点A、B、C.
(1)求该抛物线的表达式;
(2)点D的坐标为(-3,0),点P为线段AB上的一点,当锐角∠PDO的正切值是
1
2
时,求点P的坐标;
(3)在(2)的条件下,该抛物线上的一点E在x轴下方,当△ADE的面积等与四边形APCE的面积时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,一单杠高2.2m,两立柱间的距离为1.6m,将一根绳子的两端拴于立柱与铁杠的结合处A、B,绳子自然下垂,虽抛物线状,一个身高0.7m的小孩站在距立柱0.4m处,其头部刚好触上绳子的D处,求绳子的最低点O到地面的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2-4x+c的图象经过坐标原点,与x轴交于点A(-4,0).
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

课题研究:现有边长为120厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.
初三(1)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面进行了如下探索:
(1)方案①:把它折成横截面为直角三角形的水槽(如图1).
若∠ACB=90°,设AC=x厘米,该水槽的横截面面积为y厘米2,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?
方案②:把它折成横截面为等腰梯形的水槽(如图2).
若∠ABC=120°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小;
(2)假如你是该兴趣小组中的成员,请你再提供两种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).

查看答案和解析>>

同步练习册答案