精英家教网 > 初中数学 > 题目详情
如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是(  )
分析:根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△DCB,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.
解答:解:∵△DAC和△EBC均是等边三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠BCD,
在△ACE和△BCD中
AC=CD
∠ACE=∠BCD
BC=CE

∴△ACE≌△DCB(SAS);∴①正确;
∵∠ACD=∠BCE=60°,
∴∠DCE=180°-60°-60°=60°=∠ACD,
∵△ACE≌△DCB,
∴∠NDC=∠CAM,
在△ACM和△DCN中
∠CAM=∠CDN
AC=CD
∠ACM=∠DCN

∴△ACM≌△DCN(ASA),
∴CM=CN,AM=DN,∴②正确;
∵△ADC是等边三角形,
∴AC=AD,
∠ADC=∠ACD,
∵∠AMC>∠ADC,
∴∠AMC>∠ACD,
∴AC>AM,
即AC>DN,∴③错误;
故选B.
点评:本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN;④∠DAE=∠DBC.其中正确的有
①②④
(填番号)

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,△DAC和△EBC都是等边三角形,AE,BD分别与CD,CE交于点M,N.
(1)证明:△ACE≌△DCB.
(2)在两组线段:①CM与CN;②AC与DN中,有相等的线段吗?
(只须写出结论,不须证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB; ②CM=CN;③AC=DN.其中,正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△DAC和△EBC均为等边三角形,AE,BD交于O点,且分别与CD,CE交于M,N.则下列结论:①AE=BD;②CM=CN;③∠AOB=120°;④CO平分∠AOB.其中正确的有(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,结论正确的有
①②
①②
.(将正确答案的序号填在横线上)

查看答案和解析>>

同步练习册答案