精英家教网 > 初中数学 > 题目详情
如图,等腰△ABC中,AB=BC,以AB为直径的半圆分别交AC、BC于D、E两点,BF与⊙O相切于点B,交AC的延长线于点F,连接AE.
(1)求证:D是AC的中点;
(2)若CD=CF=4,求⊙O的直径;
(3)sin∠CAE=k(k>0),求
CFAB
的值.精英家教网
分析:(1)连接BD,由圆周角定理知BD⊥AF,根据等腰三角形三线合一的性质即可证得D是AC的中点.
(2)若CD=CF=4,那么AD=4,易证得△ABD∽△AFB,根据所得比例相等即可求得AB的长.
(3)由圆周角定理知∠CAE=∠ABD,因此sin∠F=sin∠ABD=k,可设AB=ak,则AF=a,AD=ak2,进而可表示出AC、FC的值,即可得到CF、AB的比例关系.
解答:精英家教网(1)证明:连接DB,
∴AB是⊙O直径,
∴∠ADB=90°,
∴DB⊥AC.(2分)
又∵AB=BC.
∴D是AC的中点.(1分)

(2)解:在△ADB和△ABF中,
∵∠ADB=∠ABF=90°,∠DAB=∠FAB,
∴△ADB∽△ABF.(2分)
AB
AF
=
AD
AB

AB
12
=
4
AB
.(1分)
∴AB=4
3
(1分)

(3)解:∵∠CAE=∠CBD,
又∵∠CBD=∠ABD,
∠ABD=∠F,(2分)
∴sin∠CAE=sin∠F=k.
设AB=ak,AF=a,
由△ADB∽△ABF,
AB
AF
=
AD
AB
,得AD=ak2,(1分)
∴AC=2ak2,CF=a-2ak2
CF
AB
=
a-2ak2
ak
=
1-2k2
k
.(1分)
点评:此题主要考查了圆周角定理、等腰三角形三线合一的性质以及相似三角形的判定和性质,能够根据圆周角定理发现∠CAE和∠ABD的等量关系是解答(3)题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于(  )
A、80°B、70°C、60°D、50°

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,等腰△ABC中,AB=AC,BD为腰AC的中线,将△ABC分成长12cm和9cm的两段,则等腰△ABC的腰长为
8或6

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰△ABC中,AC=BC=10,AB=12,以BC为直径作⊙0交AB于D,交AC于G,DF⊥AC,垂足为F,交CB的延长线于点E,则sinE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰△ABC中,AB=AC,D为BC中点,E为射线AD上一点.
求证:△ABE≌△ACE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰△ABC中,AB=AC,D、E分别为AC、AB的中点.
求证:BD=CE.

查看答案和解析>>

同步练习册答案