分析 根据角平分线的判定,可得∠ABP=∠CBP,∠ACP=∠FCP;根据三角形外角的性质,可得∠ABC+∠BAC=∠ACF,∠PBC+∠BPC=∠FCP,根据等量代换,可得答案.
解答 解:由PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,得
∠ABP=∠CBP,∠ACP=∠FCP.
由∠ACF是△ABC的外角,得
∠ABC+∠BAC=∠ACF.
两边都除以2,得
$\frac{1}{2}$∠ABC+$\frac{1}{2}$∠BAC=$\frac{1}{2}$∠ACF,
即∠PBC+$\frac{1}{2}$∠BAC=∠FCP.
由∠PCF是△BCP的外角,得
∠PBC+∠BPC=∠FCP,
∴∠BPC=$\frac{1}{2}$∠BAC=$\frac{1}{2}$×70°=35°,
故答案为:35°.
点评 本题考查了角平分线的判定,利用了角平分线的判定,三角形外角的性质,利用角平分线的判定得出∠ABP=∠CBP,∠ACP=∠FCP是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①② | B. | ①②③ | C. | ①③ | D. | ①②④ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{a}{0.4}$元 | B. | $\frac{a}{0.6}$元 | C. | 60%a元 | D. | 40%a 元 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com