精英家教网 > 初中数学 > 题目详情
20.已知关于x的方程3k-x=6的解是非负数,则k的取值范围是k≥2.

分析 先把k当作已知条件表示出x的值,再由方程的解为非负数求出k的取值范围即可.

解答 解:解方程3k-x=6得,x=3k-6,
∵方程的解是非负数,
∴3k-6≥0,解得k≥2.
故答案为:k≥2.

点评 本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.2016年母亲节前,某商家预测一种纪念T恤能畅销市场,就用13200元购进了一批这种纪念T恤,面市后果然供不应求,商家又用28800元购进了第二批这种纪念T恤,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批纪念T恤是多少件?
(2)若两批纪念T恤按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批纪念T恤全部售完后利润不低于25%(不考虑其他因素),那么每件纪念T恤的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.因式分解:
(1)2x2-2
(2)xy(x-y)+y(x-y)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某校九年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元.他们准备购买这两种笔记本共30本.
(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?
(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的$\frac{2}{3}$,但又不少于9本,请你求出有哪几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:点P(m,n)为抛物线y=ax2-4ax+b(a≠0)上一动点.
(1)P1(1,n1),P2(3,n2)为P点运动所经过的两个位置,判断n1,n2的大小,并说明理由;
(2)当1≤m≤4时,n的取值范围是1≤n≤4,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算
(1)(-2)3+($\frac{1}{2}$)-2×22-(π-2)0           
(2)5x2y÷(-$\frac{1}{2}$xy)•3xy2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解不等式(组),并把解集在数轴上表示出来.
(1)5(x-1)>6x-10
(2)$\left\{\begin{array}{l}{\frac{2x-1}{3}-\frac{5x+1}{2}≤1}\\{5x-1<3(x+1)}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算题
(1)2$\sqrt{12}$-6$\sqrt{\frac{1}{3}}$+3$\sqrt{18}$          
(2)$\frac{-\sqrt{45{y}^{2}}}{3\sqrt{5y}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.我们把满足方程x2+y2=z2的正整数的解(x、y、z)叫做勾股数,如,(3,4,5)就是一组勾股数.
(1)请你再写出两组勾股数:(6、8、10),(9、12、15);
(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2-1,z=n2+1,那么以x,y,z为三边的三角形为直径三角形(即x,y,z为勾股数),请你加以证明.

查看答案和解析>>

同步练习册答案