精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,矩形OABC的两边分别在x轴和y轴上,OA=8,OC=4.现有两动点P、Q分别从O、C同时出发,点P在线段OA上沿OA方向以每秒2个单位长的速度匀速运动,点Q在线段CO上沿CO方向以每秒1个单位长的速度匀速运动.设运动时间为t秒.
(1)填空:OP=______,OQ=______;(用含t的式子表示)
(2)试证明:四边形OPBQ的面积是一个定值,并求出这个定值;
(3)当∠QPB=90°时,抛物线数学公式经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于点N,交线段CB于点G,交x轴于点H,连结PG,BH,试探究:当线段MN的长取最大值时,判定四边形GPHB的形状.

解:(1)填空:OP=2t,OQ=4-t   …
(2)根据题意,易知:AB=4,PA=(8-2t),BC=8,CQ=t
∴S四边形OPBQ=S四边形OABC-S△PAB-S△CBQ
=4×8-AB×PA-BC×CQ
=32-×4×(8-2t)-×8×t
=32-16+4t-4t=16
∴四边形OPBQ的面积是一个定值,这个定值是16…
(3)当∠QPB=90°时,
易证:△OPQ~△ABP…


解得:t=1 或t=4(不合,舍去)
∴t=1
∴OP=2,即点P(2,0)…
又点B(8,4)、点P(2,0)在抛物线上,
可求得:,c=4
∴此时抛物线的解析式为
由点P(2,0),点B(8,4)可求得直线PB的解析式为
则根据题意设点M(x,),点 N(x,)…
∴MN=-(
=
∴当x=5时,MN最大值为3…
此时PG=OG-OP=5-2=3,BH=CB-CH=8-5=3
∴PG与BH平行且相等
∴四边形GPHB是平行四边形.…
分析:(1)根据运动的速度即可求解;
(2)根据S四边形OPBQ=S四边形OABC-S△PAB-S△CBQ,分别利用t表示出S四边形OABC,S△PAB,S△CBQ,即可求解;
(3)易证:△OPQ~△ABP,根据相似三角形的对应边的比相等,即可求得t的值,则P的坐标可以求得,利用待定系数法即可求得函数的解析式,则MN的长度可以利用t表示出来,然后利用函数的性质即可求解.
点评:本题考查了二次函数解析式的确定、相似三角形的判定和性质等知识点以及平行四边形的判定,正确求得MN的长是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案