精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).

(1)求抛物线l的解析式(用含m的式子表示);
(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;
(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.
解:(1)设抛物线l的解析式为
将A(0,m),D(2m,m),M(﹣1,﹣1﹣m)三点的坐标代入,得
,解得
∴抛物线l的解析式为
(2)设AD与x轴交于点M,过点A′作A′N⊥x轴于点N,

∵把△OAD沿直线OD折叠后点A落在点A′处,
∴△OAD≌△OA′D,OA=OA′=m,AD=A′D=2m,∠OAD=∠OA′D=90°,∠ADO=∠A′DO。
∵矩形OABC中,AD∥OC,∴∠ADO=∠DOM。
∴∠A′DO=∠DOM。∴DM=OM。
设DM=OM=x,则A′M=2m﹣x,
在Rt△OA′M中,∵OA′2+A′M2=OM2
,解得
,∴

∴A′点坐标为()。
易求直线OA′的解析式为
当x=4m时,,∴E点坐标为(4m,)。
当x=4m时,
∴抛物线l与直线CE的交点为(4m,)。
∵抛物线l与线段CE相交,∴
∵m>0,∴,解得
(3)∵
∴当x=m时,y有最大值
又∵
∴当时,随m的增大而增大。
∴当m=时,顶点P到达最高位置,
∴此时抛物线l顶点P到达最高位置时的坐标为(

试题分析:(1)设抛物线l的解析式为,将A、D、M三点的坐标代入,运用待定系数法即可求解。
(2)设AD与x轴交于点M,过点A′作A′N⊥x轴于点N.根据轴对称及平行线的性质得出DM=OM=x,则A′M=2m﹣x,OA′=m,在Rt△OA′M中运用勾股定理求出x,得出A′点坐标,运用待定系数法得到直线OA′的解析式,确定E点坐标(4m,﹣3m),根据抛物线l与线段CE相交,列出关于m的不等式组,求出解集即可。
(3)根据二次函数的性质,结合(2)中求出的实数m的取值范围,即可求解。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,Rt△OAB的顶点A(-2,4)在抛物线上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。

(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:
①PO2=PA•PB;
②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;
③当时,BP2=BO•BA;
④△PAB面积的最小值为
其中正确的是     (写出所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

与x轴的交点个数为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,抛物线轴的交点的个数是___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数(a≠0)的图象如图所示,则下列结论中正确的是
A.a>0 B.当﹣1<x<3时,y>0
C.c<0 D.当x≥1时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中点坐标为.由勾股定理得,所以A、B两点间的距离公式为
注:上述公式对A、B在平面直角坐标系中其它位置也成立.
解答下列问题:

如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.
(1)求A、B两点的坐标及C点的坐标;
(2)连结AB、AC,求证△ABC为直角三角形;
(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的顶点坐标是          

查看答案和解析>>

同步练习册答案