精英家教网 > 初中数学 > 题目详情
如图,梯形ABCD中,ADBC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.
(1)求EG的长;
(2)求证:CF=AB+AF.
(1)∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC=
DB2+CD2
=2
2

∵CE⊥BE,
∠BEC=90°,
∵点G为BC的中点,
∴EG=
1
2
BC=
2
(直角三角形斜边上中线的性质).
答:EG的长是
2


(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADF=∠HDC,
∵ADBC,
∴∠ADF=∠DBC=45°,
∴∠HDC=45°,∴∠HDF=∠BDC-∠HDC=45°,
∴∠ADF=∠HDF,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
(解法二)证明:延长BA与CD延长线交于M,
∵△BFE和△CFD中,
∠BEF=∠CDF=90°,∠BFE=∠CFD,
∴∠MBD=∠FCD,
∵在△BCD中,∠DCB=45°,BD⊥CD,
∴∠BDC=90°,
∴∠DBC=45°=∠DCB,
∴BD=CD,
△BMD和△CFD中,
∵BD=CD,∠BDM=∠CDF=90°,∠MBD=∠FCD,
∴△BMD≌△CFD,
∴CF=BM=AB+AM,DM=DF,
∵ADBC,∠ADF=∠DBC=45°,∠BDM=90°,
∴∠ADM=∠ADF=45°,
在△AFD和△AMD中
DM=DF
∠ADM=∠ADF
AD=AD

∴△AFD≌△AMD,
∴AM=AF,
∴CF=BM=AB+AM=AB+AF,即CF=AB+AF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

等腰梯形腰长为12cm,上底长为15cm,上底与腰的夹角为120°,则梯形下底的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等腰梯形ABCD中,ADBC,AB=CD,AD=10cm,BC=30cm,动点P从点A开始沿AD边向点以每秒1cm的速度运动,同时动点Q从点C开始沿CB边向点B以每秒3cm的速度运动,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
(1)t为何值时,四边形ABQP是平行四边形?
(2)四边形ABQP能成为等腰梯形吗?如果能,求出t的值;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

等腰梯形上、下底差等于一腰的长,那么腰与下底的夹角是(  )
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在梯形ABCD中,ADBC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,用6个全等的等腰梯形纸板不重叠不留空隙地拼成一个边框为正六边形的纸环,则等腰梯形的四个角中最小的角为______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在梯形ABCD中,ADBC,AB=DC,P是AD中点.求证:PB=PC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定理证明:“等腰梯形的两条对角线相等”.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等腰梯形的腰长为5cm,它的周长是22cm,则它的中位线长为______cm.

查看答案和解析>>

同步练习册答案