·ÖÎö £¨1£©¸ù¾ÝÅ×ÎïÏߵĶ¥µãµÄ±ä»¯¹æÂÉд³ö½âÎöʽ¼´¿É£»
£¨2£©Ïȸù¾Ý¶Ô½ÇÏß»¥Ïഹֱƽ·ÖµÃ³öËıßÐζ¼ÊÇÁâÐΣ¬ÔÙ˵Ã÷ËıßÐÎA0B0A1B1ºÍËıßÐÎA2B2A3B3²»ÏàËÆ£¬ÀíÓÉÊÇ£ºËıßÐÎA0B0A1B1ΪÕý·½ÐΣ¬ËıßÐÎA2B2A3B3ΪÁâÐΣ»
£¨3£©¸ù¾ÝÅ×ÎïÏßCnµÄ½âÎöʽÊÇÅ×ÎïÏßCk-1¹ØÓÚÖ±Ïßy=2k-1·Õ۵õ½Å×ÎïÏßCkËùΧ³ÉµÄͼÐÎÊÇËıßÐÎAk-1Bk-1AkBk£¨ÁâÐΣ©£¬ÔÙÓÉÁâÐεÄÃæ»ý¹«Ê½¿ÉµÃ³öÆäÃæ»ý£®
½â´ð ½â£º£¨1£©C1£ºy=-x2+2£»C2£ºy=x2+2£»C3£ºy=-x2+6£»C4£ºy=x2+10£®
£¨2£©¸ù¾ÝÅ×ÎïÏߵĶԳÆÐÔÒÔ¼°·ÕÛµÄÔÀí²»ÄѵóöËıßÐÎAk-1Bk-1AkBk£¨k=1£¬3£¬5¡£©µÄÁ½Ìõ¶Ô½ÇÏßBk-1BkÓëAk-1Ak»¥Ïà´¹Ö±ÇÒƽ·Ö£¬¹ÊһϵÁÐËıßÐÎAk-1Bk-1AkBk¾ùΪÁâÐΣ»ËüÃDz¢²»¶¼ÏàËÆ£¬·´Àý£ºËıßÐÎA0B0A1B1ºÍËıßÐÎA2B2A3B3²»ÏàËÆ£¬
ÀíÓÉÈçÏ£º
²»ÄÑËã³öA0A1=B0B1=2£¬ÓÚÊÇËıßÐÎA0B0A1B1ΪÕý·½ÐΣ®
¶øA2A3=4£¬${B_2}{B_3}=2\sqrt{2}$£¬
¡àA2A3¡ÙB2B3£¬
¡àËıßÐÎA2B2A3B3ΪÁâÐΣ¬
¡àËüÃDz»ÏàËÆ£®
£¨3£©Å×ÎïÏßCnµÄ½âÎöʽΪ£º$\left\{\begin{array}{l}y={x^2}+\frac{{{2^{n+1}}-2}}{3}£¨nż£©\\ y=-{x^2}+\frac{{{2^{n+1}}+2}}{3}£¨nÆ棩\end{array}\right.$£¬£¨»ò$y={£¨-1£©^n}•{x^2}+\frac{{{2^{n+1}}+{{£¨-1£©}^{n+1}}•2}}{3}$£®£©
ÓÉÓÚËıßÐÎAk-1Bk-1AkBk £¨k=1£¬3£¬5¡£©ÊÇÅ×ÎïÏßCk-1¹ØÓÚÖ±Ïßy=2k-1·Õ۵õ½Å×ÎïÏßCkËùΧ³ÉµÄͼÐΣ¬ÀûÓÃÉÏÊö½áÂÛ²»Äѵóö£º${A}_{k-1}{A}_{k}=\frac{{2}^{k+1}+2}{3}-\frac{{2}^{k}-2}{3}=\frac{{2}^{k}+4}{3}$£¬
¡à$\left\{\begin{array}{l}{{C}_{k-1}£ºy={x}^{2}+\frac{{2}^{k}-2}{3}}\\{{C}_{k}£ºy=-{x}^{2}+\frac{{2}^{k+1}+2}{3}}\end{array}\right.$£®
¡à$\left\{\begin{array}{l}{{x}_{{B}_{k-1}}=-\sqrt{\frac{{2}^{k-1}+2}{3}}}\\{{x}_{{B}_{k}}=\sqrt{\frac{{2}^{k-1}+2}{3}}}\end{array}\right.$£®
¡à${B}_{k-1}{B}_{k}={x}_{{B}_{k}}-{x}_{{B}_{k-1}}=2\sqrt{\frac{{2}^{k-1}+2}{3}}$£®£¨»òÕßÇó½â$\left\{\begin{array}{l}y={2^{k-1}}\\ y={x^2}+\frac{{{2^{n+1}}-2}}{3}£¨nż£©\end{array}\right.$£©£®
¡à${{S}_{{A}_{k-1}{B}_{k-1}{A}_{k}B}}_{k}=\frac{1}{2}•{A}_{k-1}{A}_{k}•{B}_{k-1}{B}_{k}$=$\frac{{2}^{k}+4}{3}•\sqrt{\frac{{2}^{k-1}+2}{3}}$=$\frac{{2\sqrt{3}}}{9}•£¨{2^{k-1}}+2£©•\sqrt{{2^{k-1}}+2}$£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄÖá¶Ô³Æ±ä»»¡¢Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖÊÒÔ¼°ÁâÐΡ¢Õý·½ÐεÄÅж¨ºÍÐÔÖÊ£¬Óõ½µÄ֪ʶµã»¹ÓÐÒ»Ôª¶þ´Î·½³ÌµÄ½â·¨ÒÔ¼°·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÌâÄ¿µÄ×ÛºÏÐÔºÜÇ¿°üº¬ÄÚÈݽ϶࣬ÄѶȺܴó£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | x£¾1 | B£® | x£¾0 | C£® | x¡Ù0 | D£® | x¡Ù1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 3£º2 | B£® | 3£º4 | C£® | 1£º1 | D£® | 1£º2 |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com