16£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßC0£ºy=x2£¬¶¥µã¼Ç×÷A0£®Ê×ÏÈÎÒÃǽ«Å×ÎïÏßC0¹ØÓÚÖ±Ïßy=1¶Ô³Æ·­ÕÛ¹ýÈ¥µÃµ½Å×ÎïÏßC1³ÆΪµÚÒ»´Î²Ù×÷£¬ÔÙ½«Å×ÎïÏßC1¹ØÓÚÖ±Ïßy=2¶Ô³Æ·­ÕÛ¹ýÈ¥µÃµ½Å×ÎïÏßC2³ÆΪµÚ¶þ´Î²Ù×÷£¬¡­£¬½«Å×ÎïÏßCn-1¹ØÓÚÖ±Ïßy=2n-1¶Ô³Æ·­ÕÛ¹ýÈ¥µÃµ½Å×ÎïÏßCn£¨¶¥µã¼Ç×÷An£©³ÆΪµÚn´Ë²Ù×÷£¨n=1£¬2£¬3¡­£©£¬¡­£®ÉèÅ×ÎïÏßC0ÓëÅ×ÎïÏßC1½»ÓÚÁ½µãB0ÓëB1£¬Ë³´ÎÁ¬½ÓA0¡¢B0¡¢A1¡¢B1ËĸöµãµÃµ½ËıßÐÎA0B0A1B1£¬Å×ÎïÏßC2ÓëÅ×ÎïÏßC3½»ÓÚÁ½µãB2ÓëB3£¬Ë³´ÎÁ¬½ÓA2¡¢B2¡¢A3¡¢B3ËĸöµãµÃµ½ËıßÐÎA2B2A3B3£¬¡­£¬Å×ÎïÏßCk-1ÓëÅ×ÎïÏßCk½»ÓÚÁ½µãBk-1ÓëBk£¬Ë³´ÎÁ¬½ÓAk-1¡¢Bk-1¡¢Ak¡¢BkËĸöµãµÃµ½ËıßÐÎAk-1Bk-1AkBk£¨k=1£¬3£¬5¡­£©£¬¡­£®
£¨1£©Çë·Ö±ðÖ±½Óд³öÅ×ÎïÏßCn£¨n=1£¬2£¬3£¬4£©µÄ½âÎöʽ£»
£¨2£©Ò»ÏµÁÐËıßÐÎAk-1Bk-1AkBk£¨k=1£¬3£¬5¡­£©ÎªÄÄÖÖÌØÊâµÄËıßÐΣ¨ËµÃ÷ÀíÓÉ£©£¿ËüÃǶ¼ÏàËÆÂð£¿Èç¹ûÈ«¶¼ÏàËÆ£¬ÇëÖ¤Ã÷Ö®£»Èç¹û²»È«¶¼ÏàËÆ£¬Çë¾Ù³öÒ»¶Ô²»ÏàËƵķ´Àý£»
£¨3£©ÊÔ¹éÄɳöÅ×ÎïÏßCnµÄ½âÎöʽ£¬ÎÞÐèÖ¤Ã÷£®²¢ÀûÓÃÄã¹éÄɳöÀ´µÄCnµÄ½âÎöʽ£¬ÇóËıßÐÎAk-1Bk-1AkBk£¨k=1£¬3£¬5¡­£©µÄÃæ»ý£¨Óú¬kµÄʽ×Ó±íʾ£©£®

·ÖÎö £¨1£©¸ù¾ÝÅ×ÎïÏߵĶ¥µãµÄ±ä»¯¹æÂÉд³ö½âÎöʽ¼´¿É£»
£¨2£©Ïȸù¾Ý¶Ô½ÇÏß»¥Ïഹֱƽ·ÖµÃ³öËıßÐζ¼ÊÇÁâÐΣ¬ÔÙ˵Ã÷ËıßÐÎA0B0A1B1ºÍËıßÐÎA2B2A3B3²»ÏàËÆ£¬ÀíÓÉÊÇ£ºËıßÐÎA0B0A1B1ΪÕý·½ÐΣ¬ËıßÐÎA2B2A3B3ΪÁâÐΣ»
£¨3£©¸ù¾ÝÅ×ÎïÏßCnµÄ½âÎöʽÊÇÅ×ÎïÏßCk-1¹ØÓÚÖ±Ïßy=2k-1·­Õ۵õ½Å×ÎïÏßCkËùΧ³ÉµÄͼÐÎÊÇËıßÐÎAk-1Bk-1AkBk£¨ÁâÐΣ©£¬ÔÙÓÉÁâÐεÄÃæ»ý¹«Ê½¿ÉµÃ³öÆäÃæ»ý£®

½â´ð ½â£º£¨1£©C1£ºy=-x2+2£»C2£ºy=x2+2£»C3£ºy=-x2+6£»C4£ºy=x2+10£®
£¨2£©¸ù¾ÝÅ×ÎïÏߵĶԳÆÐÔÒÔ¼°·­ÕÛµÄÔ­Àí²»ÄѵóöËıßÐÎAk-1Bk-1AkBk£¨k=1£¬3£¬5¡­£©µÄÁ½Ìõ¶Ô½ÇÏßBk-1BkÓëAk-1Ak»¥Ïà´¹Ö±ÇÒƽ·Ö£¬¹ÊһϵÁÐËıßÐÎAk-1Bk-1AkBk¾ùΪÁâÐΣ»ËüÃDz¢²»¶¼ÏàËÆ£¬·´Àý£ºËıßÐÎA0B0A1B1ºÍËıßÐÎA2B2A3B3²»ÏàËÆ£¬
ÀíÓÉÈçÏ£º
²»ÄÑËã³öA0A1=B0B1=2£¬ÓÚÊÇËıßÐÎA0B0A1B1ΪÕý·½ÐΣ®
¶øA2A3=4£¬${B_2}{B_3}=2\sqrt{2}$£¬
¡àA2A3¡ÙB2B3£¬
¡àËıßÐÎA2B2A3B3ΪÁâÐΣ¬
¡àËüÃDz»ÏàËÆ£®
£¨3£©Å×ÎïÏßCnµÄ½âÎöʽΪ£º$\left\{\begin{array}{l}y={x^2}+\frac{{{2^{n+1}}-2}}{3}£¨nż£©\\ y=-{x^2}+\frac{{{2^{n+1}}+2}}{3}£¨nÆ棩\end{array}\right.$£¬£¨»ò$y={£¨-1£©^n}•{x^2}+\frac{{{2^{n+1}}+{{£¨-1£©}^{n+1}}•2}}{3}$£®£©
ÓÉÓÚËıßÐÎAk-1Bk-1AkBk £¨k=1£¬3£¬5¡­£©ÊÇÅ×ÎïÏßCk-1¹ØÓÚÖ±Ïßy=2k-1·­Õ۵õ½Å×ÎïÏßCkËùΧ³ÉµÄͼÐΣ¬ÀûÓÃÉÏÊö½áÂÛ²»Äѵóö£º${A}_{k-1}{A}_{k}=\frac{{2}^{k+1}+2}{3}-\frac{{2}^{k}-2}{3}=\frac{{2}^{k}+4}{3}$£¬
¡à$\left\{\begin{array}{l}{{C}_{k-1}£ºy={x}^{2}+\frac{{2}^{k}-2}{3}}\\{{C}_{k}£ºy=-{x}^{2}+\frac{{2}^{k+1}+2}{3}}\end{array}\right.$£®
¡à$\left\{\begin{array}{l}{{x}_{{B}_{k-1}}=-\sqrt{\frac{{2}^{k-1}+2}{3}}}\\{{x}_{{B}_{k}}=\sqrt{\frac{{2}^{k-1}+2}{3}}}\end{array}\right.$£®
¡à${B}_{k-1}{B}_{k}={x}_{{B}_{k}}-{x}_{{B}_{k-1}}=2\sqrt{\frac{{2}^{k-1}+2}{3}}$£®£¨»òÕßÇó½â$\left\{\begin{array}{l}y={2^{k-1}}\\ y={x^2}+\frac{{{2^{n+1}}-2}}{3}£¨nż£©\end{array}\right.$£©£®
¡à${{S}_{{A}_{k-1}{B}_{k-1}{A}_{k}B}}_{k}=\frac{1}{2}•{A}_{k-1}{A}_{k}•{B}_{k-1}{B}_{k}$=$\frac{{2}^{k}+4}{3}•\sqrt{\frac{{2}^{k-1}+2}{3}}$=$\frac{{2\sqrt{3}}}{9}•£¨{2^{k-1}}+2£©•\sqrt{{2^{k-1}}+2}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄÖá¶Ô³Æ±ä»»¡¢Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖÊÒÔ¼°ÁâÐΡ¢Õý·½ÐεÄÅж¨ºÍÐÔÖÊ£¬Óõ½µÄ֪ʶµã»¹ÓÐÒ»Ôª¶þ´Î·½³ÌµÄ½â·¨ÒÔ¼°·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÌâÄ¿µÄ×ÛºÏÐÔºÜÇ¿°üº¬ÄÚÈݽ϶࣬ÄѶȺܴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®½â·½³Ì£¨×飩
£¨1£©$\frac{x}{x-2}$-$\frac{2}{{x}^{2}-4}$=1£®           
£¨2£©$\left\{\begin{array}{l}2x-y=3\\ 5x+y=11\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®´Ó-2£¬-1£¬0£¬1£¬2£¬4ÕâÁù¸öÊýÖУ¬ÈÎÈ¡Ò»¸öÊý×÷ΪaµÄÖµ£¬Ç¡ºÃʹµÃ¹ØÓÚx¡¢yµÄ¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{x-y=a}\\{x+y=2}\end{array}\right.$ÓÐÕûÊý½â£¬ÇÒº¯Êýy=ax2+4x+2ÓëxÖáÓй«¹²µãµÄ¸ÅÂÊÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Êý¾Ý13¡¢13¡¢13¡¢13¡¢13¡¢13µÄ·½²îΪ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®º¯Êý$y=\frac{x}{x-1}$ÖÐ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®x£¾1B£®x£¾0C£®x¡Ù0D£®x¡Ù1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬ÒÑÖªÕý·½ÐÎABCD£¬¶¥µãA£¨1£¬3£©£¬B£¨1£¬1£©£¬C£¨3£¬1£©£¬¶Ô½ÇÏß½»ÓÚµãM£®¹æ¶¨¡°°ÑÕý·½ÐÎABCDÏÈÑØxÖá·­ÕÛ£¬ÔÙÏò×óƽÒƸöµ¥Î»¡±ÎªÒ»´Î±ä»»£¬ÄÇô¾­¹ýÁ½´Î±ä»»ºó£¬µãMµÄ×ø±ê±äΪ£¨0£¬2£©£¬Á¬Ðø¾­¹ý2015´Î±ä»»ºó£¬µãMµÄ×ø±ê±äΪ£¨-2013£¬-2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£ºBFÊÇRt¡÷ABCµÄ½Çƽ·ÖÏߣ¬¡ÏACB=90¡ã£¬CDÊǸߣ¬BFÓëCD½»ÓÚµãE£¬EG¡ÎAC½»ABÓÚG£®ÇóÖ¤£ºFG¡ÍAB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏB¡¢¡ÏCµÄƽ·ÖÏß½»ÓÚµãD£®¹ýµãD×÷EF¡ÎBC£¬ÓëAB½»ÓÚµãE£¬ÓëAC½»ÓÚµãF£®ÒÑÖªAB=6cm£¬AC=4cm£¬Çó¡÷AEFµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDÖУ¬µãEÊDZßADµÄÒ»¸öÈýµÈ·Öµã£¬EC½»¶Ô½ÇÏßBDÓÚµãF£¬ÔòFC£ºECµÈÓÚ£¨¡¡¡¡£©
A£®3£º2B£®3£º4C£®1£º1D£®1£º2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸