【题目】如图,在△ABC 中,AB=AC,∠BAC=120°,E 为 BC 上一点,以 CE 为直径作⊙O 恰好经过 A、C 两点, PF⊥BC 交 BC 于点 G,交 AC 于点 F.
(1)求证:AB 是⊙O 的切线;
(2)如果 CF =2,CP =3,求⊙O 的直径 EC.
【答案】(1)见解析;(2)⊙O 的直径 EC= 3.
【解析】
(1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.
(2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为30°,利用30°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.
证明:(1)连接AO,
∵AB=AC,∠BAC=120°,
∴∠B=∠ACB=30°,
∵AO=CO,
∴∠0AC=∠OCA=30°,
∴∠BAO=120°-30°=90°,
∵OA 是半径
∴AB 是⊙O 的切线;
(2)解:连接OP,
∵PF⊥BC,∴∠FGC=∠EGP=90°,
∵CF=2,∠FCG=30°,∴FG=1,
∴在 Rt△FGC 中 CG=
∵CP=3. ∴Rt△GPC 中,PG=
设 OG=x,则 OC=x+,连接 OP,,显然 OP=OC=x+
在 Rt△OPG 中,由勾股定理知
即(x+)2=x2+(
)2∴ x
.
∴⊙O 的直径 EC=EG+CG=2x++
=3
.
故答案为:(1)见解析;(2)⊙O 的直径 EC= 3.
科目:初中数学 来源: 题型:
【题目】如图,锐角△ABC内接于⊙O,若⊙O的半径为6,sinA=,求BC的长.
【答案】BC=8.
【解析】试题分析:通过作辅助线构成直角三角形,再利用三角函数知识进行求解.
试题解析:作⊙O的直径CD,连接BD,则CD=2×6=12.
∵
∴
∴
点睛:直径所对的圆周角是直角.
【题型】解答题
【结束】
22
【题目】如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学校组织的知识竞赛活动中,老师将八年级一班和二班全部学生的成绩整理并绘制成如下统计表:
得分(分) 人数(人) 班级 | 50 | 60 | 70 | 80 | 90 | 100 |
一班 | 2 | 5 | 10 | 13 | 14 | 6 |
二班 | 4 | 4 | 16 | 2 | 12 | 12 |
(1)现已知一班和二班的平均分相同,请求出其平均分.
(2)请分别求出这两班的中位数和众数,并进一步分析这两个班级在这次竞赛中成绩的情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】河上有一座桥孔为抛物线形的拱桥(如图 ),水面宽
时,水面离桥孔顶部
,因降暴雨水面上升
.
(1)建立适当的坐标系,并求暴雨后水面的宽;(结果保留根号)
(2)一艘装满物资的小船,露出水面的部分高为 ,宽
(横断面如图
所示),暴雨后这艘船能从这座拱桥下通过吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点 -7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.
(1)填空:a= 、b= 、c= 、d= ;
(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;
(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【操作发现】如图 1,△ABC 为等边三角形,点 D 为 AB 边上的一点,∠DCE=30°,将线段 CD 绕点 C 顺时针旋转 60°得到线段 CF,连接 AF、EF. 请直接 写出下列结果:
① ∠EAF的度数为__________;
② DE与EF之间的数量关系为__________;
【类比探究】如图 2,△ABC 为等腰直角三角形,∠ACB=90°,点 D 为 AB 边上的一点∠DCE=45°,将线段 CD 绕点 C 顺时针旋转 90°得到线段 CF,连接 AF、EF.
①则∠EAF的度数为__________;
② 线段 AE,ED,DB 之间有什么数量关系?请说明理由;
【实际应用】如图 3,△ABC 是一个三角形的余料.小张同学量得∠ACB=120°,AC=BC, 他在边 BC 上取了 D、E 两点,并量得∠BCD=15°、∠DCE=60°,这样 CD、CE 将△
ABC 分成三个小三角形,请求△BCD、△DCE、△ACE 这三个三角形的面积之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.
(1)求证:AD平分∠BAC;
(2)若CD=1,求图中阴影部分的面积(结果保留π).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com