精英家教网 > 初中数学 > 题目详情

如图,ABCD为平行四边形,DFEC和BCGH为正方形.求证:AC⊥EG.

证明:∵四边形BCGH、EFDC为正方形,四边形ABCD为平行四边形,
∴GC∥BH,DC∥AB,∠HBC=∠ECD=90°,
∴∠HBA=∠GCD(两边分别平行的两角相等或互补),
∴∠HBC+∠HBA=∠GCD+∠ECD,即90°+∠HBA=∠GCD+90°,
∴∠GCE=∠ABC,
∴AB=DC=EC,BC=CG,
在△ABC和和△ECG中,

∴△ABC≌△ECG(SAS),
∴∠CGE=∠ACB,
∵∠ACB+∠GCA=90°,
∴∠CGE+∠GCA=90°,
∴AC⊥EG.
分析:本题中要证AC⊥EG也就是证∠CGE+∠GCA=90°,我们发现∠GBA+∠ACB=90°,因此证明∠CGE=∠ACB就是问题的关键,我们可通过证明三角形ABC和ECG全等来实现.
点评:本题主要考查了正方形、平行四边形的性质,通过全等三角形来得出角相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,ABCD为平行四边形,以BC为直径的⊙O经过点A,∠D=60°,BC=2,一动点P在AD上移动,过点P作直线AB的垂线,分别交直线AB、CD于E、F,设点O到EF的距离为t,若B、P、F三点能构成三角形,设此时△BPF的面积为S.
(1)计算平行四边形ABCD的面积;
(2)求S关于t的函数关系式,并写出自变量t的取值范围;
(3)△BPF的面积存在最大值吗?若存在,请求出这个最大值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,ABCD为平行四边形,DFEC和BCGH为正方形.求证:AC⊥EG.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,ABCD为平行四边形,BE∥AC,DE交AC延长线于F点,交BE于E点.
(1)求证:DF=FE;
(2)若CF=
2
5
AC,AD⊥DE,AC⊥DC,DC=
10
,求BE的长.

查看答案和解析>>

科目:初中数学 来源:2011—2012学年山东潍坊八年级下期末模拟数学试卷(带解析) 题型:解答题

如图,ABCD为平行四边形,AD=2,BE∥AC,DE交AC的延长线于F点,交BE于E点.

(1)求证:EF=DF;
(2)若AC=2CF,∠ADC=60 o, AC⊥DC,求DE的长.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东潍坊八年级下期末模拟数学试卷(解析版) 题型:解答题

如图,ABCD为平行四边形,AD=2,BE∥AC,DE交AC的延长线于F点,交BE于E点.

(1)求证:EF=DF;

(2)若AC=2CF,∠ADC=60 o, AC⊥DC,求DE的长.

 

查看答案和解析>>

同步练习册答案