精英家教网 > 初中数学 > 题目详情
精英家教网如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=(  )
A、4
B、5
C、2
3
D、
8
3
3
分析:分析题意构造一个直角三角形,然后利用勾股定理解答即可.
解答:精英家教网解:如图,延长AD,BC交于点E,则∠E=30°.
在△CED中,CE=2CD=6(30°锐角所对直角边等于斜边一半),
∴BE=BC+CE=8,
在△AEB中,AE=2AB(30°锐角所对直角边等于斜边一半)
∴AB2+BE2=AE2,即AB2+64=(2AB)2,3AB2=64,
解得:AB=
8
3
3

故选D.
点评:本题通过作辅助线,构造直角三角形,利用解直角三角形的知识进行计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案